Publications

Refine Results

(Filters Applied) Clear All

An overview of the DARPA Data Driven Discovery of Models (D3M) Program

Published in:
29th Conf. on Neural Information Processing Systems, NIPS, 5-10 December 2016.

Summary

A new DARPA program called Data Driven Discovery of Models (D3M) aims to develop automated model discovery systems that can be used by researchers with specific subject matter expertise to create empirical models of real, complex processes. Two major goals of this program are to allow experts to create empirical models without the need for data scientists and to increase the productivity of data scientists via automation. Automated model discovery systems developed will be tested on real-world problems that progressively get harder during the course of the program. Toward the end of the program, problems will be both unsolved and underspecified in terms of data and desired outcomes. The program will emphasize creating and leveraging open source technology and architecture. Our presentation reviews the goals and structure of this program which will begin early in 2017. Although the deadline for submitting proposals has past, we welcome suggestions concerning challenge tasks, evaluations, or new open-source data sets to be included for system development and evaluation that would supplement data currently being curated from many sources.
READ LESS

Summary

A new DARPA program called Data Driven Discovery of Models (D3M) aims to develop automated model discovery systems that can be used by researchers with specific subject matter expertise to create empirical models of real, complex processes. Two major goals of this program are to allow experts to create empirical...

READ MORE

Biomimetic sniffing improves the detection performance of a 3D printed nose of a dog and a commercial trace vapor detector

Published in:
Scientific Reports, Vol. 6 , art. no. 36876, December 2016. DOI: 10.1038/srep36876.

Summary

Unlike current chemical trace detection technology, dogs actively sniff to acquire an odor sample. Flow visualization experiments with an anatomically-similar 3D printed dog's nose revealed the external aerodynamics during canine sniffing, where ventral-laterally expired air jets entrain odorant-laden air toward the nose, thereby extending the "aerodynamic reach" for inspiration of otherwise inaccessible odors. Chemical sampling and detection experiments quantified two modes of operation with the artificial nose-active sniffing and continuous inspiration-and demonstrated an increase in odorant detection by a factor of up to 18 for active sniffing. A 16-fold improvement in detection was demonstrated with a commercially-available explosives detector by applying this bio-inspired design principle and making the device "sniff" like a dog. These lessons learned from the dog may benefit the next-generation of vapor samplers for explosives, narcotics, pathogens, or even cancer, and could inform future bio-inspired designs for optimized sampling of odor plumes.
READ LESS

Summary

Unlike current chemical trace detection technology, dogs actively sniff to acquire an odor sample. Flow visualization experiments with an anatomically-similar 3D printed dog's nose revealed the external aerodynamics during canine sniffing, where ventral-laterally expired air jets entrain odorant-laden air toward the nose, thereby extending the "aerodynamic reach" for inspiration of...

READ MORE

Terminal Flight Data Manager (TFDM) environmental benefits assessment

Published in:
MIT Lincoln Laboratory Report ATC-420

Summary

This work monetizes the environmental benefits of Terminal Flight Data Manager (TFDM) capabilities which reduce fuel burn and gaseous emissions, and in turn reduce climate change and air quality effects. A methodology is created which takes TFDM "engines-on" taxi time savings and converts them to fuel and carbon dioxide (CO2) emissions savings, accounting for aircraft fleet mix at each of 27 TFDM analysis airports over a 2016-2048 analysis timeframe. Total fuel reductions of approximately 300 million U.S. gallons are estimated, resulting in monetized benefits from all TFDM capabilities of $65m-$582m undiscounted, $23m-$310m discounted, depending on the Social Cost of CO2 (SCC) and discount rate used. A similar methodology is used to estimate monetized benefits of reduced air quality emissions as well.
READ LESS

Summary

This work monetizes the environmental benefits of Terminal Flight Data Manager (TFDM) capabilities which reduce fuel burn and gaseous emissions, and in turn reduce climate change and air quality effects. A methodology is created which takes TFDM "engines-on" taxi time savings and converts them to fuel and carbon dioxide (CO2)...

READ MORE

The role of master clock stability in quantum information processing

Published in:
npj Quantum Inf., Vol. 2, 8 November 2016, doi:10.1038/npjqi.2016.33.

Summary

Experimentalists seeking to improve the coherent lifetimes of quantum bits have generally focused on mitigating decoherence mechanisms through, for example, improvements to qubit designs and materials, and system isolation from environmental perturbations. In the case of the phase degree of freedom in a quantum superposition, however, the coherence that must be preserved is not solely internal to the qubit, but rather necessarily includes that of the qubit relative to the 'master clock' (e.g., a local oscillator) that governs its control system. In this manuscript, we articulate the impact of instabilities in the master clock on qubit phase coherence and provide tools to calculate the contributions to qubit error arising from these processes. We first connect standard oscillator phase-noise metrics to their corresponding qubit dephasing spectral densities. We then use representative lab-grade and performance-grade oscillator specifications to calculate operational fidelity bounds on trapped-ion and superconducting qubits with relatively slow and fast operation times. We discuss the relevance of these bounds for quantum error correction in contemporary experiments and future large-scale quantum information systems, and consider potential means to improve master clock stability.
READ LESS

Summary

Experimentalists seeking to improve the coherent lifetimes of quantum bits have generally focused on mitigating decoherence mechanisms through, for example, improvements to qubit designs and materials, and system isolation from environmental perturbations. In the case of the phase degree of freedom in a quantum superposition, however, the coherence that must...

READ MORE

Covariance estimation in terms of Stokes parameters with application to vector sensor imaging

Published in:
2016 Asilomar Conf. on Signals, Systems and Computers, Asilomar 2016, 6-9 November 2016.

Summary

Vector sensor imaging presents a challenging problem in covariance estimation when allowing arbitrarily polarized sources. We propose a Stokes parameter representation of the source covariance matrix which is both qualitatively and computationally convenient. Using this formulation, we adapt the proximal gradient and expectation maximization (EM) algorithms and apply them in multiple variants to the maximum likelihood and least squares problems. We also show how EM can be cast as gradient descent on the Riemannian manifold of positive definite matrices, enabling a new accelerated EM algorithm. Finally, we demonstrate the benefits of the proximal gradient approach through comparison of convergence results from simulated data.
READ LESS

Summary

Vector sensor imaging presents a challenging problem in covariance estimation when allowing arbitrarily polarized sources. We propose a Stokes parameter representation of the source covariance matrix which is both qualitatively and computationally convenient. Using this formulation, we adapt the proximal gradient and expectation maximization (EM) algorithms and apply them in...

READ MORE

Leveraging data provenance to enhance cyber resilience

Summary

Building secure systems used to mean ensuring a secure perimeter, but that is no longer the case. Today's systems are ill-equipped to deal with attackers that are able to pierce perimeter defenses. Data provenance is a critical technology in building resilient systems that will allow systems to recover from attackers that manage to overcome the "hard-shell" defenses. In this paper, we provide background information on data provenance, details on provenance collection, analysis, and storage techniques and challenges. Data provenance is situated to address the challenging problem of allowing a system to "fight-through" an attack, and we help to identify necessary work to ensure that future systems are resilient.
READ LESS

Summary

Building secure systems used to mean ensuring a secure perimeter, but that is no longer the case. Today's systems are ill-equipped to deal with attackers that are able to pierce perimeter defenses. Data provenance is a critical technology in building resilient systems that will allow systems to recover from attackers...

READ MORE

Large enhancement of third-order nonlinear effects with a resonant all-dielectric metasurface

Published in:
AIP Adv., Vol. 6, No. 11, 1 November 2016, 115213.

Summary

A novel low-profile nonlinear metasurface, consisting of a single-layer of all-dielectric material, is proposed and numerically investigated by a nonlinear full-wave finite-difference time-domain (FDTD) method. The proposed metasurface is transparent for low, and opaque for high values of incident light intensity. The metasurface design is broadly applicable to enhancement of intrinsic nonlinearities of any material with a sufficiently high refractive index contrast. We illustrate the ability of this design to enhance intrinsic nonlinear absorption of a transition metal oxide, vanadium pentoxide (V2O5), with resonant metasurface elements. The complex third-order nonlinear susceptibility (x^(3)) for V2O5, representing both nonlinear refraction and absorption is considered in FDTD simulations. Our design achieves high initial transparency (>90%) for low incident light intensity. An order of magnitude decrease in the required input light intensity threshold for nonlinear response of the metasurface is observed in comparison with an unpatterend film. The proposed all-dielectric metasurface in this work is ultrathin and easy to fabricate. We envision a number of applications of this design for thin film coatings that offer protection against high-power laser radiation.
READ LESS

Summary

A novel low-profile nonlinear metasurface, consisting of a single-layer of all-dielectric material, is proposed and numerically investigated by a nonlinear full-wave finite-difference time-domain (FDTD) method. The proposed metasurface is transparent for low, and opaque for high values of incident light intensity. The metasurface design is broadly applicable to enhancement of...

READ MORE

The flux qubit revisited to enhance coherence and reproducibility

Summary

The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). In this work, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and relaxation times in excess of 40 us at its flux-insensitive point. Qubit relaxation times 1 T across 22 qubits of widely varying designs are consistently matched with a single model involving resonator loss, ohmic charge noise, and 1/f flux noise, a noise source previously considered primarily in the context of dephasing, with temporal variation in 1 T attributed to quasiparticles. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T2 ~ 85 us , approximately the 1 2T limit. In addition to realizing a dramatically improved flux qubit, our results uniquely identify photon shot noise as limiting 2 T in contemporary state-of-art qubits based on transverse qubit-resonator interaction.
READ LESS

Summary

The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). In this work, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and relaxation times in excess of 40...

READ MORE

Building low-power trustworthy systems: cyber-security considerations for real-time physiological status monitoring

Summary

Real-time monitoring of physiological data can reduce the likelihood of injury in noncombat military personnel and first-responders. MIT Lincoln Laboratory is developing a tactical Real-Time Physiological Status Monitoring (RT-PSM) system architecture and reference implementation named OBAN (Open Body Area Network), the purpose of which is to provide an open, government-owned framework for integrating multiple wearable sensors and applications. The OBAN implementation accepts data from various sensors enabling calculation of physiological strain information which may be used by squad leaders or medics to assess the team's health and enhance safety and effectiveness of mission execution. Security in terms of measurement integrity, confidentiality, and authenticity is an area of interest because OBAN system components exchange sensitive data in contested environments. In this paper, we analyze potential cyber-security threats and their associated risks to a generalized version of the OBAN architecture and identify directions for future research. The threat analysis is intended to inform the development of secure RT-PSM architectures and implementations.
READ LESS

Summary

Real-time monitoring of physiological data can reduce the likelihood of injury in noncombat military personnel and first-responders. MIT Lincoln Laboratory is developing a tactical Real-Time Physiological Status Monitoring (RT-PSM) system architecture and reference implementation named OBAN (Open Body Area Network), the purpose of which is to provide an open, government-owned...

READ MORE

Nonlinear equalization of microwave photonic links

Published in:
IEEE Int. Topical Meeting on Microwave Photonics, MWP 2016, 31 October - 3 November 2016.

Summary

High dynamic range is a key requirement in advanced microwave photonic systems. We demonstrate compensation of nonlinearities occurring in microwave photonic links using a novel digital nonlinear equalization technique and demonstrate suppression of distortion products by 33 dB with a small number of equalizer coefficients.
READ LESS

Summary

High dynamic range is a key requirement in advanced microwave photonic systems. We demonstrate compensation of nonlinearities occurring in microwave photonic links using a novel digital nonlinear equalization technique and demonstrate suppression of distortion products by 33 dB with a small number of equalizer coefficients.

READ MORE