Publications
An overview of the DARPA Data Driven Discovery of Models (D3M) Program
Summary
Summary
A new DARPA program called Data Driven Discovery of Models (D3M) aims to develop automated model discovery systems that can be used by researchers with specific subject matter expertise to create empirical models of real, complex processes. Two major goals of this program are to allow experts to create empirical...
Biomimetic sniffing improves the detection performance of a 3D printed nose of a dog and a commercial trace vapor detector
Summary
Summary
Unlike current chemical trace detection technology, dogs actively sniff to acquire an odor sample. Flow visualization experiments with an anatomically-similar 3D printed dog's nose revealed the external aerodynamics during canine sniffing, where ventral-laterally expired air jets entrain odorant-laden air toward the nose, thereby extending the "aerodynamic reach" for inspiration of...
Terminal Flight Data Manager (TFDM) environmental benefits assessment
Summary
Summary
This work monetizes the environmental benefits of Terminal Flight Data Manager (TFDM) capabilities which reduce fuel burn and gaseous emissions, and in turn reduce climate change and air quality effects. A methodology is created which takes TFDM "engines-on" taxi time savings and converts them to fuel and carbon dioxide (CO2)...
The role of master clock stability in quantum information processing
Summary
Summary
Experimentalists seeking to improve the coherent lifetimes of quantum bits have generally focused on mitigating decoherence mechanisms through, for example, improvements to qubit designs and materials, and system isolation from environmental perturbations. In the case of the phase degree of freedom in a quantum superposition, however, the coherence that must...
Covariance estimation in terms of Stokes parameters with application to vector sensor imaging
Summary
Summary
Vector sensor imaging presents a challenging problem in covariance estimation when allowing arbitrarily polarized sources. We propose a Stokes parameter representation of the source covariance matrix which is both qualitatively and computationally convenient. Using this formulation, we adapt the proximal gradient and expectation maximization (EM) algorithms and apply them in...
Leveraging data provenance to enhance cyber resilience
Summary
Summary
Building secure systems used to mean ensuring a secure perimeter, but that is no longer the case. Today's systems are ill-equipped to deal with attackers that are able to pierce perimeter defenses. Data provenance is a critical technology in building resilient systems that will allow systems to recover from attackers...
Large enhancement of third-order nonlinear effects with a resonant all-dielectric metasurface
Summary
Summary
A novel low-profile nonlinear metasurface, consisting of a single-layer of all-dielectric material, is proposed and numerically investigated by a nonlinear full-wave finite-difference time-domain (FDTD) method. The proposed metasurface is transparent for low, and opaque for high values of incident light intensity. The metasurface design is broadly applicable to enhancement of...
The flux qubit revisited to enhance coherence and reproducibility
Summary
Summary
The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). In this work, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and relaxation times in excess of 40...
Building low-power trustworthy systems: cyber-security considerations for real-time physiological status monitoring
Summary
Summary
Real-time monitoring of physiological data can reduce the likelihood of injury in noncombat military personnel and first-responders. MIT Lincoln Laboratory is developing a tactical Real-Time Physiological Status Monitoring (RT-PSM) system architecture and reference implementation named OBAN (Open Body Area Network), the purpose of which is to provide an open, government-owned...
Nonlinear equalization of microwave photonic links
Summary
Summary
High dynamic range is a key requirement in advanced microwave photonic systems. We demonstrate compensation of nonlinearities occurring in microwave photonic links using a novel digital nonlinear equalization technique and demonstrate suppression of distortion products by 33 dB with a small number of equalizer coefficients.