Publications

Refine Results

(Filters Applied) Clear All

Lessons learned designing an alternative CHI for en route air traffic control

Published in:
Controller Centered HMI, 27-29 April 1999.

Summary

MIT Lincoln Laboratory is supporting the FAA-sponsored effort to design an operationally suitable Computer Human Interface (CHI) for the recently upgraded En Route Air Traffic Control Centers. All centers will soon receive new control consoles with state-of-the-art 20 square (2K by 2K resolution) color displays (currently operating in Seattle as of January 1999). The future CHI is being modeled on Eurocontrol's Operational Display and Input Development (ODID) CHI, as requested by active controllers in the US. The ODID-like CHI, with its minimal information display and color coded guidance, provides increased efficiency and productivity through employment of a modern graphical user interface. Lessons learned during the on-going design process, including research of look and feel issues in conjunction with data analysis from controller-in-the-loop testing of a prototype ODID-like CHI will be discussed. The Laboratory plans to model the alternative ODID-like CHI on the best of the European ODID, Denmark Sweden Interface (DSI) and EATCHIP CHI features, while cognizant of the FAA?s DSR capabilities and limitations to support an improved user interface. Human factors issues need resolution to provide a consistent look and feel across the Free Flight Phase 1 products and platforms, the Center TRACON Automation System (CTAS) and the User Request Evaluation Tool (URET). MIT Lincoln Laboratory has built a CHI Requirements Engineering Model (CREM) to support controller-in-the-loop testing of the ODID-like CHI, validate CHI requirements and determine applicable standards for the design of an integrated CHI. The CREM provides a means to assess various CHI alternatives and the capability to iterate options with controller teams to address user concerns. Lessons learned from the ODID-like CHI specification process will also be shared.
READ LESS

Summary

MIT Lincoln Laboratory is supporting the FAA-sponsored effort to design an operationally suitable Computer Human Interface (CHI) for the recently upgraded En Route Air Traffic Control Centers. All centers will soon receive new control consoles with state-of-the-art 20 square (2K by 2K resolution) color displays (currently operating in Seattle as...

READ MORE

A 9PAC system and application programmer's guide

Published in:
MIT Lincoln Laboratory Report ATC-267

Summary

The ASR-9 Processor Augmentation Card (9PAC) is a custom processing card that provides the ASR-9 system with increased beacon and radar processing performance. This paper describes the system and application software that executes on the prototype board, with an emphasis on the interaction between software modules. The application software on the 9PAC determines the position of radar and beacon target reports, replacing software that previously ran on the ASR-9 Array Signal Processor (ASP). The software is organized as a set of cooperating tasks executing under the control of a real-time operating system, PAC/OS, which provides all the services typical of an embedded kernel such as interrupt handling, pre-emptive multitasking, queues, signals, semaphores, mailboxes, and memory management. The deployment of 9PAC will occur in two phases. The Phase I application replaces only the beacon target detector (BTD) and radar/beacon target merge (MRG) functions of the ASP. The Phase I application consists of two executable programs since Phase I uses only two of the C44 processors on the 9PAC. One program, the housekeeping processor, is responsible for all I/O functions and performs the radar/beacon merge operation. The second progam, the beacon processor, is dedicated to processing the raw beacon replies and generating beacon targets which are then returned to the first processor for the merge operation. The Phase II application consists of three executable programs, one for each of the C44 processors on the 9PAC and performs much of the Phase I functionality and adds primary radar processing. The intent of this paper is to provide the 9PAC software support personnel with sufficient information to implement future enhancements without unintentionally compromising some aspect of the overall system.
READ LESS

Summary

The ASR-9 Processor Augmentation Card (9PAC) is a custom processing card that provides the ASR-9 system with increased beacon and radar processing performance. This paper describes the system and application software that executes on the prototype board, with an emphasis on the interaction between software modules. The application software on...

READ MORE

A case study of mid-level turbulence outside regions of active convection

Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM), 10-15 January 1999.

Summary

Historically, the principal focus of research on clear-air turbulence of concern to aircraft has been on jet stream and mountain (orographic) induced turbulence. Relatively little research has focused on the turbulence hazard outside of, but in the vicinity of, convective storms, known as Convective Induced Turbulence (CIN). In this paper, we present our analysis requested by the National Transportation Safety Board (NTSB) of the meteorological conditions leading to severe turbulence and near loss of flight control of a commercial passenger jet and find that they fall into the CIN category. On 12 May 1997, at approximately 1929 UT, an American Airlines Airbus A300 en route from Boston, MA to Miami, FL encountered severe turbulence off the coast of West Palm Beach, FL. Near the time of the incident the crew had been directed to hold at 16,000 ft because of weather and traffic near Miami International. While approaching the holding position, the aircraft experienced severe turbulence and dropped over 3000 vertical feet in 30 seconds. A detailed postevent analysis by the NTSB failed to find any causal evidence for the turbulence and no single sensor, data set, or pilot report examined by the NTSB provided justification for the magnitude of the event. Our independent analysis of the incident was conducted primarily using recorded Miami WSR-88D base data. The analysis revealed a small-scale vertical shear zone may have emanated from a thunderstorm upstream of the Airbus. Animated cross-sectional images also suggested that a rotor may have propagated with the mean wind and intersected the flight path at the time the severe turbulence was reported. This paper will focus on meteorological conditions that led to the upset and provide evidence for several possible causes of the turbulence.
READ LESS

Summary

Historically, the principal focus of research on clear-air turbulence of concern to aircraft has been on jet stream and mountain (orographic) induced turbulence. Relatively little research has focused on the turbulence hazard outside of, but in the vicinity of, convective storms, known as Convective Induced Turbulence (CIN). In this paper...

READ MORE

The thunderstorm penetration/deviation decision in the terminal area

Author:
Published in:
8th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 10-15 January 1999.

Summary

During thunderstorm periods, terminal air traffic planners make a number of key decisions. They decide when to close and re-open arrival fixes, departure fixes, and runways; they anticipate and execute changes in runway configuration; they negotiate routing and flow rate decisions with Air Route Traffic Control Center (ART CC) traffic managers; and they set the airport acceptance rate. In making each of these decisions, the traffic planner looks at a weather radar display and makes an educated guess at answering the two following questions: - What will the weather be like in the airspace and time period in question? - Will the pilots be able and willing to fly through that airspace during that time? The same two questions will be important for advanced terminal automation systems. One key element of air traffic automation systems such as the Center-TRACON Automation System (CTAS) is the calculation of candidate trajectories for each aircraft for the time period of automation control. To make this calculation, the automation software must know which routes will be usable during the control period. The first of the two fundamental questions is being addressed by the convective weather Product Development Team (PDT) of the FAA's Aviation Weather Research program. (Wolfson, 1997; Wolfson, 1999; Hallowell, 1999; Forman, 1999; Evans, 1997) The second fundamental question is the subject of the work reported here. The state of the art answer to the second question is a widely quoted air traffic control rule-of-thumb which says that pilots generally do not penetrate precipitation that is NWS VIP level 3 (i.e. 41 dBZ) or higher. That is not to say that air traffic controllers always vector aircraft around level 3+ cells but rather that they begin to anticipate pilot requests for deviations when the weather approaches level 3. A suite of new weather sensors have become available that provide much more comprehensive information on convective weather features than was available in the past. Additionally, flight-related data such as preceding pilot behavior and whether a flight is running late are easier to obtain than in the past. In this study we develop an objective quantitative assessment of which weather and flight-related variables best explain pilot deviation decision-making.
READ LESS

Summary

During thunderstorm periods, terminal air traffic planners make a number of key decisions. They decide when to close and re-open arrival fixes, departure fixes, and runways; they anticipate and execute changes in runway configuration; they negotiate routing and flow rate decisions with Air Route Traffic Control Center (ART CC) traffic...

READ MORE

Achieving higher integrity in NEXRAD products through multi-sensor integration

Author:
Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM), 10-15 January 1999.

Summary

The initial operational concept for the NEXRAD focused on support for the operational forecaster based on longstanding practice in use of weather radars by the National Weather Service (NWS) and Air Force as well as difficulties in developing reliable, fully automated phenomena detection algorithms [Crum, 1998]. By contrast, achieving high integrity in the narrow band products provided by NEXRAD to external users has received much less attention in the NEXRAD product development process thus far. However, other government weather information systems [especially the FAA's Integrated Terminal Weather System (ITWS) and the Weather and Radar Processor (WARP)] and non-meteorologist external users of the NEXRAD products through the NEXRAD Information Distribution System (NIDS) vendors need very high integrity NEXRAD products. In the NWS context, the direct utilization of NEXRAD products into numerical weather prediction models will also create much more stringent requirements for integrity of the NEXRAD base data. Achieving very high integrity through automated analysis of only the data from a single NEXRAD is very difficult. In this paper, we consider the use of a much wider range of contextual information to create high integrity external user products. For instance, with the NEXRAD Open RPG and connectivity to AWIPS and ITWS, a system architecture will exist that will facilitate the implementation of NEXRAD product quality control algorithms that utilize information from other sensors. In the following sections, we present some examples of how information from various other sources might be used to improve the quality of the data from a NEXRAD. We first show an example of how data from adjacent NEXRADs can be used to help edit out the anomalous propagation (AP) ground clutter which currently is corrupting a number of the NEXRAD reflectivity products intended for air traffic controller use. In cases where the NEXRAD is near a major metropolitan area, data from the FAA's TDWR can be used to improve the integrity of the NEXRAD reflectivity products used for hydrology. Similarly, gridded wind fields estimated from multiple Doppler analyses, aircraft reports, and numerical models can be used to help address difficult challenges in Doppler ambiguity resolution for a single NEXRAD radar. The paper concludes with suggestions for near term demonstration and evaluation of multi sensor approaches to achieving high integrity in the NEXRAD products.
READ LESS

Summary

The initial operational concept for the NEXRAD focused on support for the operational forecaster based on longstanding practice in use of weather radars by the National Weather Service (NWS) and Air Force as well as difficulties in developing reliable, fully automated phenomena detection algorithms [Crum, 1998]. By contrast, achieving high...

READ MORE

The benefits of using NEXRAD vertically integrated liquid water as an aviation weather product

Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM), 10-15 January 1999.

Summary

Over the past five years in which the Integrated Terminal Weather System (ITWS) testbed prototypes have been operational, there have been regular discrepancies noticed between the ASR–9 six–level precipitation product and the NEXRAD six–level maximum composite reflectivity product. (1. The NEXRAD composite product used in this study is the NEXRAD maximum composite reflectivity product which both the FAA and the ITWS use for weather data.). At the three prototypes in Memphis, Orlando and Dallas, staff have recognized that in certain situations the NEXRAD composite reflectivity product, which is the ITWS 100 and 200 nm long–range product, can be as much as three Video Integrator and Processor (VIP) levels higher than the ASR–9 precipitation product. This situation has caused some confusion for users of the ITWS system and concern on the part of system safety monitors. The confusion occurs because the two products do not agree with each other. Rhoda and Pawlak (1998) show that more aircraft will deviate around cells of ASR–9 VIP level 4 or greater than will penetrate them. There is also an aviation rule–of–thumb that pilots and air traffic specialists use which states cells of VIP level 3 or greater should be avoided if possible. This rule is a good guide but cannot be applied to the NEXRAD composite product. While the NEXRAD composite may show a cell with an intensity of level 3 or 4, the cell may contain very little of the higher–intensity precipitation while the bulk of the cell contains only level 2. This problem is magnified in the winter months when bright–band effects contaminate the radar data. Clutter [especially anomalous propagation (AP)] contamination of the composite reflectivity product is also a concern (especially when the AP is adjacent to actual weather returns). Differences between the two products will become more apparent with the fielding of the new ITWS situation display which has the capability of displaying both NEXRAD composite reflectivity and ASR–9 data side by side. In this study, we compare the NEXRAD composite reflectivity product with data from both the ASR–9 weather channel and an ASR–9 mosaic product as well as a Vertically Integrated Liquid water (VIL) product generated from NEXRAD base data.
READ LESS

Summary

Over the past five years in which the Integrated Terminal Weather System (ITWS) testbed prototypes have been operational, there have been regular discrepancies noticed between the ASR–9 six–level precipitation product and the NEXRAD six–level maximum composite reflectivity product. (1. The NEXRAD composite product used in this study is the NEXRAD...

READ MORE

The Terminal Convective Weather Forecast demonstration at the DFW International Airport

Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM), 10-15 January 1999.

Summary

The FAA Convective Weather Product Development Team (PDT) is tasked with developing products for convective weather forecasts for aviation users. The overall product development is a collaborative effort between scientists from MIT Lincoln Laboratory (MIT/LL), the National Center for Atmospheric Research (NCAR), and the National Severe Storms Laboratory (NSSL). As part of the PDT, MIT/LL is being funded to develop algorithms for accurately forecasting the location of strong precipitation in and around airport terminal areas. We began by consulting with air traffic personnel and commercial airline dispatchers to determine the needs of aviation users. Users indicated that convective weather, particularly line storms, caused the most consistent problems for managing air traffic. These storms are by far the major cause of aircraft delays and diversions. MIT/LL has already developed the Integrated Terminal Weather System (ITWS) which combines a variety of near-airport sensors to provide a wide range of current weather information to aviation users. Raytheon is currently building the production ITWS system which will be deployed at 45 major airports by 2003. The initial capability ITWS already provides some convective weather predictive capabilities in the form of storm motion vectors and "Storm Extrapolated Positions" (SEP; leading edge of storm at 10 and 20 minutes). But ITWS users indicated a desire for enhanced forecasts which showed the full spatial extent of the weather, how the weather would change (grow or decay) and extended forecast time periods to at least out one hour. Our approach is to develop an algorithm which may be added as a future product improvement to the ITWS system. Previous attempts at producing forecasts have focused on convective initiation and building from short-term (20-30 min) cell forecasts. Our "reverse time" approach of attacking longer time scale (60 min) features first is an outgrowth of addressing user needs and the discovery of improved tracking techniques for large scale precipitation features. The "Growth and Decay Tracker" developed by MIT/LL (Wolfson et.al., 1999) allows us to generate accurate short and long term forecasts of large scale precipitation features. This paper details the Terminal Convective Weather Forecast (TCWF) demonstration ongoing at Dallas/Ft. Worth International Airport (DFW) and discusses the underlying algorithm being developed.
READ LESS

Summary

The FAA Convective Weather Product Development Team (PDT) is tasked with developing products for convective weather forecasts for aviation users. The overall product development is a collaborative effort between scientists from MIT Lincoln Laboratory (MIT/LL), the National Center for Atmospheric Research (NCAR), and the National Severe Storms Laboratory (NSSL). As...

READ MORE

Thunderstorm induced gravity waves as a potential hazard to commercial aircraft

Author:
Published in:
8th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 10-15 January 1999.

Summary

Under certain atmospheric conditions, thunderstorm development can induce a phenomenon known as gravity waves (i.e., buoyancy or density waves). These waves are characterized by alternating regions of convergence and divergence over a relatively short distance. Such aerodynamic shear can become hazardous to air traffic if the shear contained within the waves surpasses the threshold for air traffic safety. Gravity waves are particularly hazardous because they develop in seemingly benign weather surrounding the parent thunderstorm and in many cases are not associated with any visual storm feature. Several cases have been studied in which commercial aircraft have encountered gravity waves and have been adversely affected by their encounters. The purpose of this study is to show how gravity waves can have a detrimental effect on aircraft in flight, how gravity waves can be detected, and that need for a detection algorithm exists. With the development of the National Weather Service's Next Generation Radar (WSR–88D NEXRAD) and the Federal Aviation Administration's Terminal Doppler Weather Radar (TDWR), the ability to detect gravity waves exists near many of America's major airports. Since gravity waves are a low–level phenomenon (generally below 2 km), their presence should be of interest to aircraft in the takeoff and landing stages of flight. During operations at Lincoln Laboratory's Integrated Terminal Weather System (ITWS) prototype field site in Dallas, there have been at least two incidents in which commercial aircraft experienced wind shear of at least 40 knots on takeoff, possibly caused by single or multiple gravity wave bands. This study will look at 57 cases of gravity wave formation within the terminal areas of Dallas–Ft. Worth International, Memphis International, and Orlando International airports. Statistics will be compiled to determine the frequency and severity of the gravity waves as well as their duration. The study will include Pilot Reports (PIREPS) from a few of these cases in which aircraft experienced wind shear due to suspected encounters with gravity waves. It is the hope of the author that this study will lead to the development of a detection algorithm that will increase the safety of America's commercial air traffic.
READ LESS

Summary

Under certain atmospheric conditions, thunderstorm development can induce a phenomenon known as gravity waves (i.e., buoyancy or density waves). These waves are characterized by alternating regions of convergence and divergence over a relatively short distance. Such aerodynamic shear can become hazardous to air traffic if the shear contained within the...

READ MORE

Nowcasting requirements for the aircraft vortex spacing system (AVOSS)

Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology, 10-15 Jan. 1999, pp. 340-344.

Summary

Aircraft wake vortices are counter-rotating tubes of air that are generated from aircraft as a consequence of the lift on the aircraft. The safety concern of wake vortices, particularly when lighter aircraft are following heavy planes, has caused the Federal Aviation Administration (FAA) to enact minimum separation requirements during the arrival phase of flight. These separation standards are imposed at the arrival threshold during Instrument Flight Rules (IFR) and are a significant constraint on arrival capacity at the largest U.S. airports. Any movement toward increasing air traffic efficiency, such as concepts toward free-flight, must address increasing runway capacity if they are to be fully effective. Decades of past wake vortex measurements clearly show that current wake vortex separations are overconservative in many weather conditions, and that adapting the separations to the current weather state could safely reduce these separations...This paper describes the known meteorological influences on vortex behavior and gives an overview of AVOSS. Airport climatology is studied to discuss the prevalence of conditions that are conducive to capacity increases with AVOSS technology. Finally, additional constraints on AVOSS nowcasts are discussed.
READ LESS

Summary

Aircraft wake vortices are counter-rotating tubes of air that are generated from aircraft as a consequence of the lift on the aircraft. The safety concern of wake vortices, particularly when lighter aircraft are following heavy planes, has caused the Federal Aviation Administration (FAA) to enact minimum separation requirements during the...

READ MORE

Optimizing the ITWS algorithm designed to remove anomalous propagation ground clutter from the ASR-9 precipitation product

Published in:
8th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 10-15 January 1999.

Summary

A key product within the Integrated Terminal Weather System (ITWS) Initial Operating Capability (IOC) product suite removes anomalous propagation (AP) ground clutter from the ASR-9 precipitation product. This has been identified as a critical component of ITWS due to the frequent occurrence of AP when storms or outflows move over an ASR-9. Editing is accomplished by comparing the raw ASR-9 weather data to composite maps generated by the Next Generation Weather Radar (NEXRAD) and the Terminal Doppler Weather Radar (TDWR). An editing template, containing regions of AP, is created based on the ASR-9 data collected at the middle of the composite volume scan to minimize the difference in update rates. The template is used to edit the ASR-9 scan immediately after the composite map and all subsequent scans until a new composite map is received. This algorithm has been shown to perform quite well, especially if the weather and AP returns are not co-located. During the 1994 Demonstration and Validation Operational Test and Evaluation in Memphis (MEM) and Orlando (MCO), the probability of editing AP (PEAP) in the absence of weather was 0.97 for level 2 and greater returns (Klingle-Wilson, 1995). The probability of editing weather (PEW) for those cases with weather only was quite low, i.e., 0.01. In order to minimize the removal of weather returns in those cases where the AP and weather are located in close proximity, the editing thresholds are quite conservative. This is reflected by the 1994 results which show a PEAP of 0.81 and a PEW of 0.02 for this class of event. Besides the conservative thresholds, another area of concern is the fact that the AP regions can expand or increase in intensity after the AP editing template is created. This rapid variation frequently occurs with convectively generated AP and can cause the performance of the algorithm to decrease with time until a new template is created. In this study, we will examine the algorithm failure mechanisms in detail to identify possible site-adaptable parameter changes that can be used to improve the performance for the mixed weather/AP events. This is especially germane since the parameter set was not re-evaluated after the TDWR composite map was incorporated in 1995. In the critical region over the airport during hazardous weather conditions, this radar updates more frequently than the NEXRAD. Since the parameters were designed to account for the NEXRAD volume update rate, they are probably too conservative for the current algorithm (which uses both composite maps).
READ LESS

Summary

A key product within the Integrated Terminal Weather System (ITWS) Initial Operating Capability (IOC) product suite removes anomalous propagation (AP) ground clutter from the ASR-9 precipitation product. This has been identified as a critical component of ITWS due to the frequent occurrence of AP when storms or outflows move over...

READ MORE