Publications
Lessons learned designing an alternative CHI for en route air traffic control
Summary
Summary
MIT Lincoln Laboratory is supporting the FAA-sponsored effort to design an operationally suitable Computer Human Interface (CHI) for the recently upgraded En Route Air Traffic Control Centers. All centers will soon receive new control consoles with state-of-the-art 20 square (2K by 2K resolution) color displays (currently operating in Seattle as...
A 9PAC system and application programmer's guide
Summary
Summary
The ASR-9 Processor Augmentation Card (9PAC) is a custom processing card that provides the ASR-9 system with increased beacon and radar processing performance. This paper describes the system and application software that executes on the prototype board, with an emphasis on the interaction between software modules. The application software on...
A case study of mid-level turbulence outside regions of active convection
Summary
Summary
Historically, the principal focus of research on clear-air turbulence of concern to aircraft has been on jet stream and mountain (orographic) induced turbulence. Relatively little research has focused on the turbulence hazard outside of, but in the vicinity of, convective storms, known as Convective Induced Turbulence (CIN). In this paper...
The thunderstorm penetration/deviation decision in the terminal area
Summary
Summary
During thunderstorm periods, terminal air traffic planners make a number of key decisions. They decide when to close and re-open arrival fixes, departure fixes, and runways; they anticipate and execute changes in runway configuration; they negotiate routing and flow rate decisions with Air Route Traffic Control Center (ART CC) traffic...
Achieving higher integrity in NEXRAD products through multi-sensor integration
Summary
Summary
The initial operational concept for the NEXRAD focused on support for the operational forecaster based on longstanding practice in use of weather radars by the National Weather Service (NWS) and Air Force as well as difficulties in developing reliable, fully automated phenomena detection algorithms [Crum, 1998]. By contrast, achieving high...
The benefits of using NEXRAD vertically integrated liquid water as an aviation weather product
Summary
Summary
Over the past five years in which the Integrated Terminal Weather System (ITWS) testbed prototypes have been operational, there have been regular discrepancies noticed between the ASR–9 six–level precipitation product and the NEXRAD six–level maximum composite reflectivity product. (1. The NEXRAD composite product used in this study is the NEXRAD...
The Terminal Convective Weather Forecast demonstration at the DFW International Airport
Summary
Summary
The FAA Convective Weather Product Development Team (PDT) is tasked with developing products for convective weather forecasts for aviation users. The overall product development is a collaborative effort between scientists from MIT Lincoln Laboratory (MIT/LL), the National Center for Atmospheric Research (NCAR), and the National Severe Storms Laboratory (NSSL). As...
Thunderstorm induced gravity waves as a potential hazard to commercial aircraft
Summary
Summary
Under certain atmospheric conditions, thunderstorm development can induce a phenomenon known as gravity waves (i.e., buoyancy or density waves). These waves are characterized by alternating regions of convergence and divergence over a relatively short distance. Such aerodynamic shear can become hazardous to air traffic if the shear contained within the...
Nowcasting requirements for the aircraft vortex spacing system (AVOSS)
Summary
Summary
Aircraft wake vortices are counter-rotating tubes of air that are generated from aircraft as a consequence of the lift on the aircraft. The safety concern of wake vortices, particularly when lighter aircraft are following heavy planes, has caused the Federal Aviation Administration (FAA) to enact minimum separation requirements during the...
Optimizing the ITWS algorithm designed to remove anomalous propagation ground clutter from the ASR-9 precipitation product
Summary
Summary
A key product within the Integrated Terminal Weather System (ITWS) Initial Operating Capability (IOC) product suite removes anomalous propagation (AP) ground clutter from the ASR-9 precipitation product. This has been identified as a critical component of ITWS due to the frequent occurrence of AP when storms or outflows move over...