Publications

Refine Results

(Filters Applied) Clear All

Modeling modern network attacks and countermeasures using attack graphs

Published in:
ACSAC 2009, Annual Computer Security Applications Conf., 7 December 2009, pp. 117-126.

Summary

By accurately measuring risk for enterprise networks, attack graphs allow network defenders to understand the most critical threats and select the most effective countermeasures. This paper describes substantial enhancements to the NetSPA attack graph system required to model additional present-day threats (zero-day exploits and client-side attacks) and countermeasures (intrusion prevention systems, proxy firewalls, personal firewalls, and host-based vulnerability scans). Point-to-point reachability algorithms and structures were extensively redesigned to support "reverse" reachability computations and personal firewalls. Host-based vulnerability scans are imported and analyzed. Analysis of an operational network with 85 hosts demonstrates that client-side attacks pose a serious threat. Experiments on larger simulated networks demonstrated that NetSPA's previous excellent scaling is maintained. Less than two minutes are required to completely analyze a four-enclave simulated network with more than 40,000 hosts protected by personal firewalls.
READ LESS

Summary

By accurately measuring risk for enterprise networks, attack graphs allow network defenders to understand the most critical threats and select the most effective countermeasures. This paper describes substantial enhancements to the NetSPA attack graph system required to model additional present-day threats (zero-day exploits and client-side attacks) and countermeasures (intrusion prevention...

READ MORE

Speaker comparison with inner product discriminant functions

Published in:
Neural Information Processing Symp., 7 December 2009.

Summary

Speaker comparison, the process of finding the speaker similarity between two speech signals, occupies a central role in a variety of applications - speaker verification, clustering, and identification. Speaker comparison can be placed in a geometric framework by casting the problem as a model comparison process. For a given speech signal, feature vectors are produced and used to adapt a Gaussian mixture model (GMM). Speaker comparison can then be viewed as the process of compensating and finding metrics on the space of adapted models. We propose a framework, inner product discriminant functions (IPDFs), which extends many common techniques for speaker comparison - support vector machines, joint factor analysis, and linear scoring. The framework uses inner products between the parameter vectors of GMM models motivated by several statistical methods. Compensation of nuisances is performed via linear transforms on GMM parameter vectors. Using the IPDF framework, we show that many current techniques are simple variations of each other. We demonstrate, on a 2006 NIST speaker recognition evaluation task, new scoring methods using IPDFs which produce excellent error rates and require significantly less computation than current techniques.
READ LESS

Summary

Speaker comparison, the process of finding the speaker similarity between two speech signals, occupies a central role in a variety of applications - speaker verification, clustering, and identification. Speaker comparison can be placed in a geometric framework by casting the problem as a model comparison process. For a given speech...

READ MORE

Effects of ionizing radiation on digital single event transients in a 180-nm fully depleted SOI process

Published in:
2009 IEEE Nuclear & Space Radiation Effects Conf., 07/20/2009 [in: IEEE Trans. Nuclear Sci., Vol. 56, No. 9, December 2009, pp. 3477-3482].

Summary

Effects of ionizing radiation on single event transients are reported for Fully Depleted SOI (FDSOI) technology using experiments and simulations. Logic circuits, i.e. CMOS inverter chains, were irradiated with cobalt-60 gamma radiation. When charge is induced in the n-channel FET with laser-probing techniques, laser-induced transients widen with increased total dose. This is because radiation causes charge to be trapped in the buried oxide, and reduces the p-channel FET drive current. When the p-channel FET drive current is reduced, the time required to restore the output of the laser-probed FET back to its original condition is increased, i.e. the upset transient width is increased. A widening of the transient pulse is also observed when a positive bias is applied to the wafer without any exposure to radiation. This is because a positive wafer bias reproduces the shifts inFET threshold voltages that occur during total dose irradiation. Results were also verified with heavy ion testing and mixed mode simulations.
READ LESS

Summary

Effects of ionizing radiation on single event transients are reported for Fully Depleted SOI (FDSOI) technology using experiments and simulations. Logic circuits, i.e. CMOS inverter chains, were irradiated with cobalt-60 gamma radiation. When charge is induced in the n-channel FET with laser-probing techniques, laser-induced transients widen with increased total dose...

READ MORE

Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations

Published in:
26th Army Science Conf., 1 December 2008 (Anal. Bioanal. Chem., Vol. 395, pp. 357-369).

Summary

A campaign to measure the amount of trace explosive residues in an operational military environment was conducted on May 27?31, 2007, at the National Training Center at Fort Irwin, CA, USA. The objectives of this campaign were to develop the methods needed to collect and analyze samples from tactical military settings, to use the data obtained to determine what the trace explosive signatures suggest about the potential capabilities of chemical-based means to detect IEDs, and, finally, to present a framework whereby a sound understanding of the signature science can be used to guide development of new sensing technologies and sensor concepts of operation. Through our use of combined background and threat signature data, we have performed statistical analyses to estimate upper limits of notional sensor performance that is limited only by the spatial correlation of the signature chemicals to the threats of interest.
READ LESS

Summary

A campaign to measure the amount of trace explosive residues in an operational military environment was conducted on May 27?31, 2007, at the National Training Center at Fort Irwin, CA, USA. The objectives of this campaign were to develop the methods needed to collect and analyze samples from tactical military...

READ MORE

Three-dimensional integration technology for advanced focal planes

Summary

We have developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. This paper describes the 3D technology and discusses some of the advanced focal plane arrays that have been built using it.
READ LESS

Summary

We have developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. This paper describes the 3D technology and discusses some of the advanced focal plane arrays that have been built using...

READ MORE

The MIT-LL/AFRL IWSLT-2008 MT System

Published in:
Int. Workshop on Spoken Language Translation, IWSLT, 1-2 December 2009.

Summary

This paper describes the MIT-LL/AFRL statistical MT system and the improvements that were developed during the IWSLT 2008 evaluation campaign. As part of these efforts, we experimented with a number of extensions to the standard phrase-based model that improve performance for both text and speech-based translation on Chinese and Arabic translation tasks. We discuss the architecture of the MIT-LL/AFRL MT system, improvements over our 2007 system, and experiments we ran during the IWSLT-2008 evaluation. Specifically, we focus on 1) novel segmentation models for phrase-based MT, 2) improved lattice and confusion network decoding of speech input, 3) improved Arabic morphology for MT preprocessing, and 4) system combination methods for machine translation.
READ LESS

Summary

This paper describes the MIT-LL/AFRL statistical MT system and the improvements that were developed during the IWSLT 2008 evaluation campaign. As part of these efforts, we experimented with a number of extensions to the standard phrase-based model that improve performance for both text and speech-based translation on Chinese and Arabic...

READ MORE

Time delay integration and in-pixel spatiotemporal filtering using a nanoscale digital CMOS focal plane readout

Summary

A digital focal plane array (DFPA) architecture has been developed that incorporates per-pixel full-dynamic-range analog-to-digital conversion and orthogonal-transfer-based realtime digital signal processing capability. Several long-wave infrared-optimized pixel processing focal plane readout integrated circuit (ROIC) designs have been implemented, each accommodating a 256 x 256 30-um-pitch detector array. Demonstrated in this paper is the application of this DFPA ROIC architecture to problems of background pedestal mitigation, wide-field imaging, image stabilization, edge detection, and velocimetry. The DFPA architecture is reviewed, and pixel performance metrics are discussed in the context of the application examples. The measured data reported here are for DFPA ROICs implemented in 90-nm CMOS technology and hybridized to HgxCd1-xTe (MCT) detector arrays with cutoff wavelengths ranging from 7 to 14.5 m and a specified operating temperature of 60 K-80 K.
READ LESS

Summary

A digital focal plane array (DFPA) architecture has been developed that incorporates per-pixel full-dynamic-range analog-to-digital conversion and orthogonal-transfer-based realtime digital signal processing capability. Several long-wave infrared-optimized pixel processing focal plane readout integrated circuit (ROIC) designs have been implemented, each accommodating a 256 x 256 30-um-pitch detector array. Demonstrated in this...

READ MORE

A multi-sensor compressed sensing receiver: performance bounds and simulated results

Published in:
43rd Asilomar Conf. on Signals, Systems, and Computers, 1-4 November 2009, pp. 1571-1575.

Summary

Multi-sensor receivers are commonly tasked with detecting, demodulating and geolocating target emitters over very wide frequency bands. Compressed sensing can be applied to persistently monitor a wide bandwidth, given that the received signal can be represented using a small number of coefficients in some basis. In this paper we present a multi-sensor compressive sensing receiver that is capable of reconstructing frequency-sparse signals using block reconstruction techniques in a sensor-frequency basis. We derive performance bounds for time-difference and angle of arrival (AoA) estimation of such a receiver, and present simulated results in which we compare AoA reconstruction performance to the bounds derived.
READ LESS

Summary

Multi-sensor receivers are commonly tasked with detecting, demodulating and geolocating target emitters over very wide frequency bands. Compressed sensing can be applied to persistently monitor a wide bandwidth, given that the received signal can be represented using a small number of coefficients in some basis. In this paper we present...

READ MORE

Rapid prototyping of radar algorithms

Author:
Published in:
IEEE Sig. Proc. Mag., Vol. 26, No. 6, November 2009, pp. 158-162.

Summary

Rapid prototyping of advanced signal processing algorithms is critical to developing new radars. Signal processing engineers usually use high level languages like MATLAB, IDL, or Python to develop advanced algorithms and to determine the optimal parameters for these algorithms. Many of these algorithms have very long execution times due to computational complexity and/or very large data sets, which hinders an efficient engineering development workflow. That is, signal processing engineers must wait hours, or even days, to get the results of the current algorithm, parameters, and data set before making changes and refinements for the next iteration. In the meantime, the engineer may have thought of several more permutations that he or she wants to test.
READ LESS

Summary

Rapid prototyping of advanced signal processing algorithms is critical to developing new radars. Signal processing engineers usually use high level languages like MATLAB, IDL, or Python to develop advanced algorithms and to determine the optimal parameters for these algorithms. Many of these algorithms have very long execution times due to...

READ MORE

CompositeMatch: detecting n-ary matches in ontology alignment

Published in:
OM 2009: Proc. 4th Int. Workshop on Ontology Matching, 25 October 2009, pp. 250-251.

Summary

The field of ontology alignment still contains numerous unresolved problems, one of which is the accurate identification of composite matches. In this work, we present a context-sensitive ontology alignment algorithm, CompositeMatch, that identifies these matches, along with the typical one-to-one matches, by looking more broadly at the information that a concept's relationships confer. We show that our algorithm can identify composite matches with greater confidence than current tools.
READ LESS

Summary

The field of ontology alignment still contains numerous unresolved problems, one of which is the accurate identification of composite matches. In this work, we present a context-sensitive ontology alignment algorithm, CompositeMatch, that identifies these matches, along with the typical one-to-one matches, by looking more broadly at the information that a...

READ MORE