Publications
Characteristics of gust fronts
Summary
Summary
A gust front is the leading edge of a thunderstorm outflow. A gust frontal passage is typically characterized by a drop in temperature, a rise in relative humidity and pressure, and an increase in wind speed and gustiness. Gust front detection is of concern for both Terminal Doppler Weather Radar...
Improvement in gust front algorithm detection capability using reflectivity thin lines versus azimuthal shears
Summary
Summary
Gust front detection is of concern for both Terminal Doppler Weather Radar (TDWR) and Next Generation Weather Radar (NEXRAD) systems. The automatic detection of gust fronts is desirable in the airport terminal environment because warnings of potentially hazardous gust front-related wind shears can be delivered to arriving and departing pilots...
Performance results and potential operational uses for the prototype TDWR microburst prediction product
Summary
Summary
The Terminal Doppler Weather Radar (TDWR) is a ground-based system for providing automated warnings of aviation wind shear hazards. This paper describes a proposed new TDWR product for microburst prediction. The proposed Microburst Prediction (MBP) product provides the ability to predict microbursts prior to the onset of surface outflow. The...
A hybrid Cartesian windfield synthesis technique using a triple Doppler radar network
Summary
Summary
The estimation of air and particle motions in storms from multiple Doppler radar measurement is a long standing problem in radar meteorology. Our research interest in understanding the relationship of electrical change generation processes above the freezing level to thunderstorm life cycle, and in the detailed quantification of the eventual...
An improved gust front detection algorithm for the TDWR
Summary
Summary
Gust fronts are associated with potentially hazardous wind shears and cause sustained wind shifts after passage. Terminal Air Traffic Control (ATC) is concerned about the safety hazard associated with shear regions and prediction of the wind shift for runway reconfiguration. The Terminal Doppler Weather Radar (TDWR) system has a gust...
Status of the Terminal Doppler Weather Radar - one year before deployment
Summary
Summary
The Federal Aviation Administration (FAA) initiated the Terminal Doppler Weather Radar (TDWR) program in the mid-1980s in response to the need for improved real time hazardous weather (especially low altitude wind shear) detection in the terminal area. The program is designed to develop a reliable automated Doppler radar based system...
Weather information requirements for terminal air traffic control automation
Summary
Summary
Aviation operations in the airport terminal area, where flights converge from a number of directions onto one or two active runways, create a fundamental limitation on the capacity of the national airspace system. The U.S. Federal Aviation Administration (FAA) has recognized that the throughput of existing terminals can be increased...
Phased-array calibration by adaptive nulling
Summary
Summary
The limitations to ultra-low sidelobe performance are explored using a 32-element linear array, operating at L-band, contianing transmit/receive (T/R) modules with 12-bit phase shifters. With conventional far-field calibrations, the average sidelobe level of the array was about-40dB. In theory, considerably lower sidelobe performance is expected from such an array. Initially...
Speech nonlinearities, modulations, and energy operators
Summary
Summary
In this paper, we investigate an AM-FM model for representing modulations in speech resonances. Specifically, we propose a frequency modulation (FM) model for the time-varying formants whose amplitude varies as the envelope of an amplitude-modulated (AM) signal. To detect the modulations we apply the energy operator (psi)(x) = (x)^2 -...
High resolution microburst outflow vertical profile data from Huntsville, Alabama, and Denver, Colorado
Summary
Summary
The purpose of this report is to present detailed data on microburst outflows recorded by the TDWR testbed radar (FL-2) in Huntsville, Alabama (1986) and Denver, Colorado (1987-88). Whenever possible, a microburst detected within 10 km of the radar was scanned in a vertical direction (RHI) at 1 to 2...