Publications

Refine Results

(Filters Applied) Clear All

Analysis of surveillance performance at Chicago O'Hare Airport

Published in:
MIT Lincoln Laboratory Report ATC-193

Summary

This report describes the results of RF measurements of the 1030 and 1090 MHz environment in the Chicago terminal area conducted by Lincoln Laboratory in October 1991. The measurements were made at the request of the FAA in response to reports by controllers in Chicago that TCAS interrogations are affecting the surveillance performance of the Chicago Secondary Surveillance Radar (SSR). The Airborne Meauserements Facility (AMF), developed at Lincoln Laboratory, was used to gather TCAS and SSR interrogation and reply data in the vicinity of O'Hare Airport during periods of active TCAS operation. Simultaneously, local aircraft track data were collected using the Automated Radar Terminal System (ARTS) data recording facility. Analysis of both the AMF data and the ARTS data show that TCAS interrogations do not cause significant degradation in SSR surveillance performance and that the average Chicago ARTS track performance in the presence of TCAS-equipped aircraft is comparable to earlier measurements of track performance in Chicago as well as at a number of other high-density terminal areas. Specific regions within the CHicago surveillance area were observed to contain concentrations of poor ARTS track performance, and analysis of the data has shown the cause to be differential vertical lobing associated with the SSR antenna and faulty Mode S transponders on certain aircarrier aircraft. Both of these problems have subsequently been corrected.
READ LESS

Summary

This report describes the results of RF measurements of the 1030 and 1090 MHz environment in the Chicago terminal area conducted by Lincoln Laboratory in October 1991. The measurements were made at the request of the FAA in response to reports by controllers in Chicago that TCAS interrogations are affecting...

READ MORE

Machine Intelligent Gust Front Algorithm

Published in:
MIT Lincoln Laboratory Report ATC-196
Topic:

Summary

The Federal Aviation Administration has sponsored research and development of algorithms for automatic gust front detection as part of a suite of hazardous weather detection capabilities for airports. These algorithms are intended for use with Doppler radar systems, specifically the Terminal Doppler Weather Radar (TDWR) and the Airport Surveillance Radar enhanced with a Wind Shear Processor (ASR-9 WSP). Although gust fronts are observable with fairly reliable signatures in TDWR data, existing gust front detection algorithms have achieved only modest levels of detection performance. For smaller airports not slated to receive a dedicated TDWR, the ASR-9 WSP will provide a less expensive wind shear detection capability. Gust front detection in ASR-9 SP data is an even more difficult problem, given the reduced sensitivity and less reliable Doppler measurements of this radar. A Machine Intelligent Gust Front Algorithm (MIGFA) has been constructed at Lincoln Laboratory that is a radical departure from previous design strategies. Incorporating knowledge-based, signal-processing techniques initially developed at Lincoln Laboratory for automatic target recognition, MIGFA uses meterological knowledge, spatial and temporal context, conditional data fusion, delayed thresholding, and pixel-level fusion of evidence to improve gust front detection performance significantly. In tests comparing MIGFA with an existing state-of-the-art algorithm applied to ASR-9 WSP data, MIGFA has substantially outperformed the older algorithm. In fact, by some measures, MIGFA has done as well or better than human interpreters of the same data. Operational testing of this version was done during 1992 in Orlando, Florida. The desing, test results, and performance evaluation of hte ASR-9 WSP version of MIGFA are presented in this report, which was prepared as part of the documentation package for the ASR-9 WSP gust front algorithm.
READ LESS

Summary

The Federal Aviation Administration has sponsored research and development of algorithms for automatic gust front detection as part of a suite of hazardous weather detection capabilities for airports. These algorithms are intended for use with Doppler radar systems, specifically the Terminal Doppler Weather Radar (TDWR) and the Airport Surveillance Radar...

READ MORE

A machine intelligent gust front algorithm for Doppler weather radars

Published in:
26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 654-656.

Summary

Gust fronts generated by thunderstorms can seriously affect the safety and efficiency of airport operations. Lincoln Laboratory, under contract with the Federal Aviation Administration (FAA), has had a significant role in the development of two Doppler radar systems that are capable of detecting low altitude wind shears, including gust fronts, in the airport terminal control area. These systems are the latest generation Airport Surveillance Radar, enhanced with a Wind Shear Processor (ASR-98 WSP) and the Terminal Doppler Weather Radar (TDWR).
READ LESS

Summary

Gust fronts generated by thunderstorms can seriously affect the safety and efficiency of airport operations. Lincoln Laboratory, under contract with the Federal Aviation Administration (FAA), has had a significant role in the development of two Doppler radar systems that are capable of detecting low altitude wind shears, including gust fronts...

READ MORE

Anomalous propagation associated with thunderstorm outflows

Published in:
Proc. 26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 238-240.

Summary

Battan noted that ducting of radar energy by anomalous atmospheric refractive index profiles and resulting abnormally strong ground clutter can occur during three types of meteorological circumstance: (i) large scale boundary layer temperature inversions and associated sharp decrease in moisture with height -- these are often created by nocturnal radiative cooling; (ii) warm, dry air moving over cooler bodies of water, resulting in cooling and moistening of air in the lowest levels; (iii) cool, moist outflows from thunderclouds. In contrast to the first two types of anaomalous propagation (AP), radar ducting associated with thunderstorm outflows is quite dynamic and may mimic echoes from precipitating clouds in terms of spatial scale and temporal evolution. While non-coherent weather radars (e.g. WSR-57) are obviously susceptible to false storm indications from this phenomemenon, Doppler radars that select the level of ground clutter suppression based on "clear day maps" may also fail to suppress the AP-induced ground clutter echoes. Operational Doppler radar systems known to be susceptible to this phenomena are the National Weather Service's WSR-88D and the Federal Aviation Administration's Airport Surveillance Radar (ASR-9) six-level weather channel. In this paper, characteristics of thunderstorm outflow-generated AP are documented using data from a testbed ASR-9 operated at Orlando, Florida. The testbed radar's rapid temporal update (4.8 seconds per PPI scan) and accurate scan-to-scan registration of radar resolution cells enabled characterization of the spatial and temporal evolution of the AP-induced clutter echoes. We discuss implications of these phenomenological characteristics on operational systems, specifically the ASR-9. Algorithms for discrimination between true precipitation echoes and AP-induced ground clutter are discussed.
READ LESS

Summary

Battan noted that ducting of radar energy by anomalous atmospheric refractive index profiles and resulting abnormally strong ground clutter can occur during three types of meteorological circumstance: (i) large scale boundary layer temperature inversions and associated sharp decrease in moisture with height -- these are often created by nocturnal radiative...

READ MORE

Clutter filter design for multiple-PRT signals

Published in:
Proc. 26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 235-237.

Summary

The trade-off of range vs. velocity ambiguity is fundamental and operationally significant for many S- and C-band pulsed Doppler weather radars. Transmission schemes using multiple pulse repetition times (PRTs) (i.e., nonuniform pulse spacing) offer the potential for extending the unambiguous measurement range by resolving intervals of velocity ambiguity. Unfortunately, multiple PRT methods can be problematic with low-elevation scanning when ground clutter removal is required. We have constructed both Chebyshev and mean-squared error (MSE) desing algorithms (Choroboy, 1993) that deal with design in the complex domain; the MSE algorithms are described below.
READ LESS

Summary

The trade-off of range vs. velocity ambiguity is fundamental and operationally significant for many S- and C-band pulsed Doppler weather radars. Transmission schemes using multiple pulse repetition times (PRTs) (i.e., nonuniform pulse spacing) offer the potential for extending the unambiguous measurement range by resolving intervals of velocity ambiguity. Unfortunately, multiple...

READ MORE

The Memphis Precision Runway Monitor Program Instrument Landing System final approach study

Published in:
MIT Lincoln Laboratory Report ATC-194

Summary

This report documents the study of the lateral positions of aircraft on Instrument Landing System (ILS) approaches during the Memphis, Tennessee, Precision Runway Monitor (PRM) demonstration. The PRM is an advanced radar monitoring system that improved the arrival capacity of closely spaced parallel runways in poor weather conditions. The results of this study are used to assist in determining the minimum runway spacing that will he authorized for PRM. The objective of this study was to quantify the lateral character of ILS arrivals and the consequent impact on independent simultaneous ILS arrival to closely spaced parallel runways. The sensitivity of the arriving aircrafts' lateral positions to different variables such as visibility, wind runway, aircraft type, autopilot performance, and localizer beam width was determined. Also, the Memphis arrival data were compared to FAA Technical Center Chicago O'Hare approach data. The analysis was primarily based on surveillance reports of 4,000 ILS arrivals into Memphis International Airport, collected with the PRM AMPS sensor (ATCRBS Monopulse Processing System). A major result of the study was that lateral aircraft positions will not hamper independent arrivals to parallel runways spaced 3,400 feet apart, but will impede operations at 3,000 feet or smaller unless approach modifications are introduced. Lateral deviations were found to be most sensitive to reduced visibility and certain autopilots. Lateral deviations were also found to be somewhat more at Memphis relative to Chicago O'Hare. Recommendations for further data analysis and collection are discussed.
READ LESS

Summary

This report documents the study of the lateral positions of aircraft on Instrument Landing System (ILS) approaches during the Memphis, Tennessee, Precision Runway Monitor (PRM) demonstration. The PRM is an advanced radar monitoring system that improved the arrival capacity of closely spaced parallel runways in poor weather conditions. The results...

READ MORE

Machine intelligent gust front detection

Published in:
Lincoln Laboratory Journal, Vol. 6, No. 1, Spring 1993, pp. 187-212.

Summary

Techniques of low-level machine intelligence, originally developed at Lincoln Laboratory to recognize military ground vehicles obscured by camouflage and foliage, are being used to detect gust fronts in Doppler weather radar imagery. This Machine Intelligent Gust Front Algorithm (MIGFA) is part of a suite of hazardous-weather-detection functions being developed under contract with the Federal Aviation Administration. Initially developed for use with the latest generation Airport Surveillance Radar equipped with a wind shear processor (ASR-9 WSP), MIGFA was deployed for operational testing in Orlando, Florida, during the summer of 1992. MIGFA has demonstrated levels of detection performance that have not only markedly exceeded the capabilities of existing gust front algorithms, but are competitive with human interpreters.
READ LESS

Summary

Techniques of low-level machine intelligence, originally developed at Lincoln Laboratory to recognize military ground vehicles obscured by camouflage and foliage, are being used to detect gust fronts in Doppler weather radar imagery. This Machine Intelligent Gust Front Algorithm (MIGFA) is part of a suite of hazardous-weather-detection functions being developed under...

READ MORE

Setting values for TDWR/LLWAS 3 integration parameters

Author:
Published in:
MIT Lincoln Laboratory Report ATC-195

Summary

In 1993 the FAA will begin deploying the Terminal Doppler Weather Radar (TDWR) at selected airports in the United States. Forty-five TDWRs will be collocated with LLWAS 3 systems, and the FAA has decided that all TDWRs collocated with LLWAS 3 systems must be integrated with LLWAS 3 prior to commissioning. The algorithm chosen to perform this integration must be supplied with a set of site-specific parameters. This report gives guidance on how to set the values of theme integration parameters.
READ LESS

Summary

In 1993 the FAA will begin deploying the Terminal Doppler Weather Radar (TDWR) at selected airports in the United States. Forty-five TDWRs will be collocated with LLWAS 3 systems, and the FAA has decided that all TDWRs collocated with LLWAS 3 systems must be integrated with LLWAS 3 prior to...

READ MORE

Results of simulation studies of precision runway monitoring of independent approaches to closely-spaced parallel runways

Author:
Published in:
J. ATC, January-March 1993, pp. 18-24.

Summary

Increased air travel in recent years has resulted in a steady increase in the number and duration of flight delays. In an attempt to increase airport capacity, MIT Lincoln Laboratory, under the sponsorship of the Federal Aviation Administration (FAA), has supported the development of a Precision Runway Monitor (PRM). The PRM is an advanced radar monitoring system designed to increase utilization of closely-spaced, multiple, parallel runways during adverse weather conditions. The PRM consists of radar which has higher accuracy and a faster update interval than the current system, and a high resolution, color display that informs the Monitor Controller of the occurrence of hazardous flight path deviations by means of automated visual and vocal warning alerts. Studies of air traffic controller reaction to the PRM were conducted at Memphis Airport and Raleigh-Durham Airport in order to evaluate system effectiveness and to assess the effects of key variables on controller reaction time. This paper documents the results of the controller studies conducted at Memphis by MIT Lincoln Laboratory. The testing consisted of the presentation of real-time simulations, and measurement of air traffic controllers were surveyed regarding the acceptability of the PRM.
READ LESS

Summary

Increased air travel in recent years has resulted in a steady increase in the number and duration of flight delays. In an attempt to increase airport capacity, MIT Lincoln Laboratory, under the sponsorship of the Federal Aviation Administration (FAA), has supported the development of a Precision Runway Monitor (PRM). The...

READ MORE

The Terminal Doppler Weather Radar (TDWR) Moving Target Simulator (MTS) at Orlando, Florida

Published in:
MIT Lincoln Laboratory Report ATC-188

Summary

Monitoring the performance of Doppler weather radars presents special problems since target returns cannot be verified by reference to other systems (e,g ., as ASR-9 aircraft reports can be compared with beacon replies). The Terminal Doppler Weather Radar (TDWR) system includes a Moving Target Simulator (MTS) which provides a point target equivalent to a 50 dBZ reflectivity weather return with an apparent radial velocity of 5 m/s. This report describes the installation results for a prototype MTS using the TDWR testbed radar in Orlando, FL. Procedures were developed for improved aiming of the MTS, using aiming of the MTS, using azimuth and elevation adjustments, which are recommended to be incorporated in the production MTS installation procedure. Initial data analyses indicate that the MTS returns from a typical radio tower would be useful for integrity monitoring in fair weather using typical TDWR filters. The use of the MTS when high -reflectivity weather or anomalous propagation (AP) is present needs further study.
READ LESS

Summary

Monitoring the performance of Doppler weather radars presents special problems since target returns cannot be verified by reference to other systems (e,g ., as ASR-9 aircraft reports can be compared with beacon replies). The Terminal Doppler Weather Radar (TDWR) system includes a Moving Target Simulator (MTS) which provides a point...

READ MORE