Publications

Refine Results

(Filters Applied) Clear All

Simulation based evaluation of a code diversification strategy

Published in:
5th Int. Conf. on Simulation and Modeling Methodologies, Technologies, and Applications, SIMULTECH 2015, 21-23 July 2015.

Summary

Periodic randomization of a computer program's binary code is an attractive technique for defending against several classes of advanced threats. In this paper we describe a model of attacker-defender interaction in which the defender employs such a technique against an attacker who is actively constructing an exploit using Return Oriented Programming (ROP). In order to successfully build a working exploit, the attacker must guess the locations of several small chunks of program code (i.e., gadgets) in the defended program's memory space. As the attacker continually guesses, the defender periodically rotates to a newly randomized variant of the program, effectively negating any gains the attacker made since the last rotation. Although randomization makes the attacker's task more difficult, it also incurs a cost to the defender. As such, the defender's goal is to find an acceptable balance between utility degradation (cost) and security (benefit). One way to measure these two competing factors is the total task latency introduced by both the attacker and any defensive measures taken to thwart him. We simulated a number of diversity strategies under various threat scenarios and present the measured impact on the defender's task.
READ LESS

Summary

Periodic randomization of a computer program's binary code is an attractive technique for defending against several classes of advanced threats. In this paper we describe a model of attacker-defender interaction in which the defender employs such a technique against an attacker who is actively constructing an exploit using Return Oriented...

READ MORE

Vehicle-mounted STAR antenna isolation performance

Published in:
IEEE Antennas and Propagation Society Int. Symp. 2015, 19-25 July 2015.

Summary

Vehicle-to-vehicle communication systems promise enhanced safety for passengers, but require access to a crowded wireless spectrum to enable their data links. Simultaneous Transmit and Receive (STAR) systems can facilitate this spectrum access by increasing the number of users within a given frequency band. Since high isolation is needed for STAR system operation, the effect of mounting a STAR antenna on a vehicle is investigated in this paper. The omni-directional antennas isolation performance was measured to be 53 dB at 2.45 GHz across a 60 MHz bandwidth, which confirms that the vehicle does not significantly degrade isolation performance.
READ LESS

Summary

Vehicle-to-vehicle communication systems promise enhanced safety for passengers, but require access to a crowded wireless spectrum to enable their data links. Simultaneous Transmit and Receive (STAR) systems can facilitate this spectrum access by increasing the number of users within a given frequency band. Since high isolation is needed for STAR...

READ MORE

A modification of the two-antenna method to determine the phase center location as well as the gain of a wideband antenna

Published in:
2015 IEEE Int. Symp. on Antennas and Propagation, 19-24 July 2015.

Summary

A technique is presented for determining the amplitude center or phase center location of a wideband Vivaldi antenna at measurement distances of a few wavelengths. It is based on the well known two-antenna gain measurement technique but makes the antenna separation a variable. The phase center separation is shown to be proportional to the derivative of a transmission matrix loss parameter which is constant and independent of the antenna separation. A linear least squares fit to transmission loss parameters measured at several antenna separations is shown to yield the antenna gain and phase center location.
READ LESS

Summary

A technique is presented for determining the amplitude center or phase center location of a wideband Vivaldi antenna at measurement distances of a few wavelengths. It is based on the well known two-antenna gain measurement technique but makes the antenna separation a variable. The phase center separation is shown to...

READ MORE

Guaranteeing spoof-resilient multi-robot networks

Published in:
2015 Robotics: Science and Systems Conf., 13-17 July 2015.

Summary

Multi-robot networks use wireless communication to provide wide-ranging services such as aerial surveillance and unmanned delivery. However, effective coordination between multiple robots requires trust, making them particularly vulnerable to cyber-attacks. Specifically, such networks can be gravely disrupted by the Sybil attack, where even a single malicious robot can spoof a large number of fake clients. This paper proposes a new solution to defend against the Sybil attack, without requiring expensive cryptographic key-distribution. Our core contribution is a novel algorithm implemented on commercial Wi-Fi radios that can "sense" spoofers using the physics of wireless signals. We derive theoretical guarantees on how this algorithm bounds the impact of the Sybil Attack on a broad class of robotic coverage problems. We experimentally validate our claims using a team of AscTec quadrotor servers and iRobot Create ground clients, and demonstrate spoofer detection rates over 96%.
READ LESS

Summary

Multi-robot networks use wireless communication to provide wide-ranging services such as aerial surveillance and unmanned delivery. However, effective coordination between multiple robots requires trust, making them particularly vulnerable to cyber-attacks. Specifically, such networks can be gravely disrupted by the Sybil attack, where even a single malicious robot can spoof a...

READ MORE

Temporal and multi-source fusion for detection of innovation in collaboration networks

Published in:
Proc. of the 18th Int. Conf. On Information Fusion, 6-9 July 2015.

Summary

A common problem in network analysis is detecting small subgraphs of interest within a large background graph. This includes multi-source fusion scenarios where data from several modalities must be integrated to form the network. This paper presents an application of novel techniques leveraging the signal processing for graphs algorithmic framework, to well-studied collaboration networks in the field of evolutionary biology. Our multi-disciplinary approach allows us to leverage case studies of transformative periods in this scientific field as truth. We build on previous work by optimizing the temporal integration filters with respect to truth data using a tensor decomposition method that maximizes the spectral norm of the integrated subgraph's adjacency matrix. We also demonstrate that we can mitigate data corruption via fusion of different data sources, demonstrating the power of this analysis framework for incomplete and corrupted data.
READ LESS

Summary

A common problem in network analysis is detecting small subgraphs of interest within a large background graph. This includes multi-source fusion scenarios where data from several modalities must be integrated to form the network. This paper presents an application of novel techniques leveraging the signal processing for graphs algorithmic framework...

READ MORE

Thermal and residual excited-state population in a 3D transmon qubit

Summary

Remarkable advancements in coherence and control fidelity have been achieved in recent years with cryogenic solid-state qubits. Nonetheless, thermalizing such devices to their milliKelvin environments has remained a long-standing fundamental and technical challenge. In this context, we present a systematic study of the first-excited-state population in a 3D transmon superconducting qubit mounted in a dilution refrigerator with a variable temperature. Using a modified version of the protocol developed by Geerlings et al., we observe the excited-state population to be consistent with a Maxwell-Boltzmann distribution, i.e., a qubit in thermal equilibrium with the refrigerator, over the temperature range 35-150 mK. Below 35 mK, the excited-state population saturates at approximately 0.1%. We verified this result using a flux qubit with ten times stronger coupling to its readout resonator. We conclude that these qubits have effective temperature Teff ơ 35 mK. Assuming Teff is due solely to hot quasiparticles, the inferred qubit lifetime is 108 microns and in plausible agreement with the measured 80 microns.
READ LESS

Summary

Remarkable advancements in coherence and control fidelity have been achieved in recent years with cryogenic solid-state qubits. Nonetheless, thermalizing such devices to their milliKelvin environments has remained a long-standing fundamental and technical challenge. In this context, we present a systematic study of the first-excited-state population in a 3D transmon superconducting...

READ MORE

Analyzing Mission Impacts of Cyber Actions (AMICA)

Published in:
Proc. NATO S&T Workshop on Cyber Attack, Detection, Forensics and Attribution for Assessment of Mission Impact, 15 June 2015.

Summary

This paper describes AMICA (Analyzing Mission Impacts of Cyber Actions), an integrated approach for understanding mission impacts of cyber attacks. AMICA combines process modeling, discrete-event simulation, graph-based dependency modeling, and dynamic visualizations. This is a novel convergence of two lines of research: process modeling/simulation and attack graphs. AMICA captures process flows for mission tasks as well as cyber attacker and defender tactics, techniques, and procedures (TTPs). Vulnerability dependency graphs map network attack paths, and mission-dependency graphs define the hierarchy of high-to-low-level mission requirements mapped to cyber assets. Through simulation of the resulting integrated model, we quantify impacts in terms of mission-based measures, for various mission and threat scenarios. Dynamic visualization of simulation runs provides deeper understanding of cyber warfare dynamics, for situational awareness in the context of simulated conflicts. We demonstrate our approach through a prototype tool that combines operational and systems views for rapid analysis.
READ LESS

Summary

This paper describes AMICA (Analyzing Mission Impacts of Cyber Actions), an integrated approach for understanding mission impacts of cyber attacks. AMICA combines process modeling, discrete-event simulation, graph-based dependency modeling, and dynamic visualizations. This is a novel convergence of two lines of research: process modeling/simulation and attack graphs. AMICA captures process...

READ MORE

Aircraft in situ validation of hydrometeors and icing conditions inferred by ground-based NEXRAD polarimetric radar

Published in:
SAE Int. Conf. on Icing of Aircraft, Engines, and Structures, ICE 2015, 15 June 2015.

Summary

MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated campaign of in situ flights in winter storms. During the month of February in 2012 and 2013, the Convair-580 aircraft operated by the National Research Council of Canada was used for in situ validation of snowstorm characteristics under simultaneous observation by NEXRAD radars in Cleveland, Ohio and Buffalo, New York. The most anisotropic and easily distinguished winter targets to dual pol radar are ice crystals. Accordingly, laboratory diffusion chamber measurements in a tightly-controlled parameter space of temperature and humidity provide the linkage between shape and the expectation for the presence/absence of water saturation conditions necessary for icing hazard in situ. In agreement with the laboratory measurements pertaining to dendritic and hexagonal flat plate crystals, the aircraft measurements have verified the presence of supercooled water in mainly low concentrations coincident with regions showing layered anomalies of positive differential reflectivity (ZDR) by ground-based radar, otherwise known as +ZDR 'bright bands'. Extreme values of ZDR (up to +8 dB) have also been found to be coincident with hexagonal flat plate crystals and intermittent supercooled water, also consistent with laboratory measurements. The icing conditions found with the anisotropic description are considered non-classical (condensation/collision-coalescence) and require the ascent of air and availability of ice nuclei. A modest ascent rate (
READ LESS

Summary

MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated...

READ MORE

Sensitive detection and identification of isovanillin aerosol particles at the pg/cm^3 mass concentration level using Raman spectroscopy

Published in:
Aerosol Sci. Technol., Vol. 49, No. 9, 2015, pp. 753-6.

Summary

A compact Raman spectroscopy system with high sensitivity to chemical aerosols has been developed. This system has been used to detect isovanillin aerosols with mass concentration of 12 pg/cm3 in a 15 s signal integration period with a signal-to-noise ratio of 32. We believe this represents the lowest chemical aerosol concentration and signal integration period product ever reported for a Raman spectroscopy system. The Raman system includes (i) a 10 W, 532-nm cw laser, (ii) an aerosol flow cell, (iii) a 60x aerosol concentrator, (iv) an f/1.8 Raman spectrometer with a spectral range of 400-1400 cm^-1 and a resolution of 4 cm^-1, and (v) a low-noise CCD camera (1340 x 400 pixels). The collection efficiency of the Raman system has been determined to be 2.8%. Except for the laser cooling subsystem, the Raman system fits in a 0.61 m x 0.61 m x 0.61 m box.
READ LESS

Summary

A compact Raman spectroscopy system with high sensitivity to chemical aerosols has been developed. This system has been used to detect isovanillin aerosols with mass concentration of 12 pg/cm3 in a 15 s signal integration period with a signal-to-noise ratio of 32. We believe this represents the lowest chemical aerosol...

READ MORE

Snapshot on-chip HDR ROIC architectures

Published in:
Computational Optical Sensing and Imaging, 7-11 June 2015.

Summary

We describe novel digital readout integrated circuits (DROICs) that achieve snapshot on-chip high dynamic range imaging where most commercial systems require a multiple exposure acquisition.
READ LESS

Summary

We describe novel digital readout integrated circuits (DROICs) that achieve snapshot on-chip high dynamic range imaging where most commercial systems require a multiple exposure acquisition.

READ MORE