Publications
Scalable cryptographic authentication for high performance computing
Summary
Summary
High performance computing (HPC) uses supercomputers and computing clusters to solve large computational problems. Frequently HPC resources are shared systems and access to restricted data sets or resources must be authenticated. These authentication needs can take multiple forms, both internal and external to the HPC cluster. A computational stack that...
HPC-VMs: virtual machines in high performance computing systems
Summary
Summary
The concept of virtual machines dates back to the 1960s. Both IBM and MIT developed operating system features that enabled user and peripheral time sharing, the underpinnings of which were early virtual machines. Modern virtual machines present a translation layer of system devices between a guest operating system and the...
Benchmarking parallel eigen decomposition for residuals analysis of very large graphs
Summary
Summary
Graph analysis is used in many domains, from the social sciences to physics and engineering. The computational driver for one important class of graph analysis algorithms is the computation of leading eigenvectors of matrix representations of a graph. This paper explores the computational implications of performing an eigen decomposition of...
Scalable cryptographic authentication for high performance computing
Summary
Summary
High performance computing (HPC) uses supercomputers and computing clusters to solve large computational problems. Frequently HPC resources are shared systems and access to restricted data sets or resources must be authenticated. These authentication needs can take multiple forms, both internal and external to the HPC cluster. A computational stack that...
Driving big data with big compute
Summary
Summary
Big Data (as embodied by Hadoop clusters) and Big Compute (as embodied by MPI clusters) provide unique capabilities for storing and processing large volumes of data. Hadoop clusters make distributed computing readily accessible to the Java community and MPI clusters provide high parallel efficiency for compute intensive workloads. Bringing the...
Vocal-source biomarkers for depression - a link to psychomotor activity
Summary
Summary
A hypothesis in characterizing human depression is that change in the brain's basal ganglia results in a decline of motor coordination. Such a neuro-physiological change may therefore affect laryngeal control and dynamics. Under this hypothesis, toward the goal of objective monitoring of depression severity, we investigate vocal-source biomarkers for depression...
Supervector LDA - a new approach to reduced-complexity i-vector language recognition
Summary
Summary
In this paper, we extend our previous analysis of Gaussian Mixture Model (GMM) subspace compensation techniques using Gaussian modeling in the supervector space combined with additive channel and observation noise. We show that under the modeling assumptions of a total-variability i-vector system, full Gaussian supervector scoring can also be performed...
Analyzing and interpreting automatically learned rules across dialects
Summary
Summary
In this paper, we demonstrate how informative dialect recognition systems such as acoustic pronunciation model (APM) help speech scientists locate and analyze phonetic rules efficiently. In particular, we analyze dialect-specific characteristics automatically learned from APM across two American English dialects. We show that unsupervised rule retrieval performs similarly to supervised...
Speech enhancement using sparse convolutive non-negative matrix factorization with basis adaptation
Summary
Summary
We introduce a framework for speech enhancement based on convolutive non-negative matrix factorization that leverages available speech data to enhance arbitrary noisy utterances with no a priori knowledge of the speakers or noise types present. Previous approaches have shown the utility of a sparse reconstruction of the speech-only components of...
Query-by-example using speaker content graphs
Summary
Summary
We describe methods for constructing and using content graphs for query-by-example speaker recognition tasks within a large speech corpus. This goal is achieved as follows: First, we describe an algorithm for constructing speaker content graphs, where nodes represent speech signals and edges represent speaker similarity. Speech signal similarity can be...