Publications

Refine Results

(Filters Applied) Clear All

Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system

Published in:
Opt. Lett., Vol. 37, No. 13, 1 July 2012, pp. 2700-2702.

Summary

We present a high-repetition-frequency, diode-pumped, and chirped-pulse amplification system operating at 106 W average output with excellent beam quality (M^2 = 1.3), based on cryogenically cooled Yb:YLF. 1 nJ seed pulses, derived from a mode-locked Ti:sapphire laser, are first amplified to 1 mJ pulse energy at 10 kHz repetition frequency in a regenerative amplifier. The second-stage, multipass amplifier increases the pulse energy to 10.6 mJ, resulting in a spectral width of 2.2 nm. The pulses are compressed to 865 fs in duration, which is 1.26 times the transform limit.
READ LESS

Summary

We present a high-repetition-frequency, diode-pumped, and chirped-pulse amplification system operating at 106 W average output with excellent beam quality (M^2 = 1.3), based on cryogenically cooled Yb:YLF. 1 nJ seed pulses, derived from a mode-locked Ti:sapphire laser, are first amplified to 1 mJ pulse energy at 10 kHz repetition frequency...

READ MORE

Establishing wind information needs for four dimensional trajectory-based operations

Published in:
1st Int. Conf. on Interdisciplinary Science for Innovative Air Traffic Management, ISIATM, 26 June 2012.

Summary

Accurate wind information is of fundamental importance to the delivery of benefits from future air traffic concepts. A Wind Information Analysis Framework is described in this paper and its utility for assessing wind information needs for a four-dimensional trajectory based operations application is demonstrated.
READ LESS

Summary

Accurate wind information is of fundamental importance to the delivery of benefits from future air traffic concepts. A Wind Information Analysis Framework is described in this paper and its utility for assessing wind information needs for a four-dimensional trajectory based operations application is demonstrated.

READ MORE

Towards the detection of aircraft icing conditions using operational dual-polarimetric radar

Published in:
7th European Conf. on Radar in Meteorology and Hydrology, ERAD, 25-29 June 2012.

Summary

In anticipation of the dual-polarimetric upgrade to the National Weather Service operational radar network (WSR-88D) research is being conducted to utilize this extensive new data source for remote aircraft icing detection. The first challenge is to accurately locate the melting layer. A new image-processing-based algorithm is proposed and demonstrated. The next challenge is to use the dual-polarimetric data above the melting level to distinguish regions containing super-cooled liquid water, which constitutes an aviation icing hazard, from regions of pure ice and snow. It has been well documented that the S-band dual-polarimetric radar signatures at individual range gates of super-cooled liquid water and ice crystals overlap significantly, complicating the identification of icing conditions using individual radar measurements. Recently several investigators have found that the aggregate characteristics of dual-polarimetric radar measurements over regions on the order of several kilometers show distinguishing features between regions containing super-cooled liquid and those with ice only. In this study, the features found in the literature are evaluated, extended and combined using a fuzzy-logic framework to provide an icing threat likelihood. The results of this new algorithm are computed using data collected in Colorado from the Colorado State University CHILL radar and the National Center for Atmospheric Research S-Pol radar (collectively called FRONT – The Front Range Observational Testbed) collected in the winter of 2010/2011 in coordination with the NASA Icing Remote Sensing System (NIRSS) and compared to pilot reports on approach or departure from nearby airports. The preliminary results look encouraging and will be presented. The ultimate goal is to produce an end-to-end algorithm to produce a reliable icing threat product that can then be combined with existing icing detection systems to improve their performance.
READ LESS

Summary

In anticipation of the dual-polarimetric upgrade to the National Weather Service operational radar network (WSR-88D) research is being conducted to utilize this extensive new data source for remote aircraft icing detection. The first challenge is to accurately locate the melting layer. A new image-processing-based algorithm is proposed and demonstrated. The...

READ MORE

Exploring the impact of advanced front-end processing on NIST speaker recognition microphone tasks

Summary

The NIST speaker recognition evaluation (SRE) featured microphone data in the 2005-2010 evaluations. The preprocessing and use of this data has typically been performed with telephone bandwidth and quantization. Although this approach is viable, it ignores the richer properties of the microphone data-multiple channels, high-rate sampling, linear encoding, ambient noise properties, etc. In this paper, we explore alternate choices of preprocessing and examine their effects on speaker recognition performance. Specifically, we consider the effects of quantization, sampling rate, enhancement, and two-channel speech activity detection. Experiments on the NIST 2010 SRE interview microphone corpus demonstrate that performance can be dramatically improved with a different preprocessing chain.
READ LESS

Summary

The NIST speaker recognition evaluation (SRE) featured microphone data in the 2005-2010 evaluations. The preprocessing and use of this data has typically been performed with telephone bandwidth and quantization. Although this approach is viable, it ignores the richer properties of the microphone data-multiple channels, high-rate sampling, linear encoding, ambient noise...

READ MORE

Linear prediction modulation filtering for speaker recognition of reverberant speech

Published in:
Odyssey 2012, The Speaker and Language Recognition Workshop, 25-28 June 2012.

Summary

This paper proposes a framework for spectral enhancement of reverberant speech based on inversion of the modulation transfer function. All-pole modeling of modulation spectra of clean and degraded speech are utilized to derive the linear prediction inverse modulation transfer function (LP-IMTF) solution as a low-order IIR filter in the modulation envelope domain. By considering spectral estimation under speech presence uncertainty, speech presence probabilities are derived for the case of reverberation. Aside from enhancement, the LP-IMTF framework allows for blind estimation of reverberation time by extracting a minimum phase approximation of the short-time spectral channel impulse response. The proposed speech enhancement method is used as a front-end processing step for speaker recognition. When applied to the microphone condition of the NISTSRE 2010 with artificially added reverberation, the proposed spectral enhancement method yields significant improvements across a variety of performance metrics.
READ LESS

Summary

This paper proposes a framework for spectral enhancement of reverberant speech based on inversion of the modulation transfer function. All-pole modeling of modulation spectra of clean and degraded speech are utilized to derive the linear prediction inverse modulation transfer function (LP-IMTF) solution as a low-order IIR filter in the modulation...

READ MORE

The MITLL NIST LRE 2011 language recognition system

Summary

This paper presents a description of the MIT Lincoln Laboratory (MITLL) language recognition system developed for the NIST 2011 Language Recognition Evaluation (LRE). The submitted system consisted of a fusion of four core classifiers, three based on spectral similarity and one based on tokenization. Additional system improvements were achieved following the submission deadline. In a major departure from previous evaluations, the 2011 LRE task focused on closed-set pairwise performance so as to emphasize a system's ability to distinguish confusable language pairs. Results are presented for the 24-language confusable pair task at test utterance durations of 30, 10, and 3 seconds. Results are also shown using the standard detection metrics (DET, minDCF) and it is demonstrated the previous metrics adequately cover difficult pair performance. On the 30 s 24-language confusable pair task, the submitted and post-evaluation systems achieved average costs of 0.079 and 0.070 and standard detection costs of 0.038 and 0.033.
READ LESS

Summary

This paper presents a description of the MIT Lincoln Laboratory (MITLL) language recognition system developed for the NIST 2011 Language Recognition Evaluation (LRE). The submitted system consisted of a fusion of four core classifiers, three based on spectral similarity and one based on tokenization. Additional system improvements were achieved following...

READ MORE

A safety driven approach to the development of an airborne sense and avoid system

Published in:
AIAA Infotech at Aerospace Conf. and Exhibit, 19-21 June 2012.

Summary

Sense and avoid is the primary technical barrier to increased unmanned aircraft system airspace access. A safety assessment driven approach to sense and avoid system design and requirements validation is being employed to ensure safety and operational suitability. The foundation of this approach is a fast-time modeling and simulation architecture originally used to support the certification of the Traffic Alert and Collision Avoidance System. This paper describes the safety assessment methodology, including the architecture and evaluation metrics, and presents preliminary results for key system architecture and design tradeoffs.
READ LESS

Summary

Sense and avoid is the primary technical barrier to increased unmanned aircraft system airspace access. A safety assessment driven approach to sense and avoid system design and requirements validation is being employed to ensure safety and operational suitability. The foundation of this approach is a fast-time modeling and simulation architecture...

READ MORE

Microgrid study: energy security for DoD installations

Summary

Growing concerns about the vulnerability of the electric grid, uncertainty about the cost of oil, and an increase in the deployment of renewable generation on domestic military installations have all led the Department of Defense (DoD) to reconsider its strategy for providing energy security for critical domestic operations. Existing solutions typically use dedicated backup generators to service each critical load. For large installations, this can result in over 50 small generators, each servicing a low voltage feeder to an individual building. The system as a whole is typically not well integrated either internally, with nearby renewable assets, or to the larger external grid. As a result, system performance is not optimized for efficient, reactive, and sustainable operations across the installation in the event of a power outage or in response to periods of high stress on the grid. Recent advances in energy management systems and power electronics provide an opportunity to interconnect multiple sources and loads into an integrated system that can then be optimized for reliability, efficiency, and/or cost. These integrated energy systems, or microgrids, are the focus of this study. The study was performed with the goals of (1) achieving a better understanding of the current microgrid efforts across DoD installations, specifically those that were in place or underway by the end of FY11, (2) categorizing the efforts with a consistent typology based on common, measurable parameters, and (3) performing cost-benefit trades for different microgrid architectures. This report summarizes the results of several months of analysis and provides insight into opportunities for increased energy security, efficiency, and the incorporation of renewable and distributed energy resources into microgrids, as well as the factors that might facilitate or impede implementation.
READ LESS

Summary

Growing concerns about the vulnerability of the electric grid, uncertainty about the cost of oil, and an increase in the deployment of renewable generation on domestic military installations have all led the Department of Defense (DoD) to reconsider its strategy for providing energy security for critical domestic operations. Existing solutions...

READ MORE

Dynamical decoupling and dephasing in interacting two-level systems

Published in:
Phys. Rev. Lett., Vol. 109, No. 1, 6 June 2012, 010502.

Summary

We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing the qubit's transition frequency relative to the two-level system, we realize a refocusing pulse that reduces dephasing due to fluctuations in the transition frequencies, thereby improving the coherence time of the entangled state. The coupling coherence is further enhanced when applying multiple refocusing pulses, in agreement with our 1/f noise model. The results are applicable to any two-qubit system with transverse coupling and they highlight the potential of decoupling techniques for improving two-qubit gate fidelities, an essential prerequisite for implementing fault-tolerant quantum computing.
READ LESS

Summary

We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing the qubit's transition frequency relative to the two-level system, we realize a refocusing pulse that reduces dephasing...

READ MORE

Impact of semiconductor optical amplifiers in coherent down-conversion microwave photonic links

Published in:
CLEO: Conf. on Lasers and Electro-Optics, 6-11 June 2012.

Summary

We compare the impact of conventional semiconductor optical amplifiers (SOAs) and high linearity slab-coupled optical waveguide amplifiers (SCOWAs) on the SFDR of carrier-suppressed coherent down-conversion microwave photonic links.
READ LESS

Summary

We compare the impact of conventional semiconductor optical amplifiers (SOAs) and high linearity slab-coupled optical waveguide amplifiers (SCOWAs) on the SFDR of carrier-suppressed coherent down-conversion microwave photonic links.

READ MORE