Publications

Refine Results

(Filters Applied) Clear All

Dual polarization radar winter storm studies supporting development of NEXRAD-based aviation hazard products

Summary

The Next Generation Weather Radar (NEXRAD) dual polarization upgrade has begun adding a functional enhancement to classify hydrometeors. MIT Lincoln Laboratory (LL) develops NEXRAD-based weather radar products for Federal Aviation Administration (FAA) weather systems such as Corridor Integrated Weather System (CIWS), Integrated Terminal Weather System (ITWS), and Weather and Radar Processor (WARP). Without dual polarization, those products are limited to providing information on precipitation location and intensity. With dual polarization, LL is now developing new aviation weather products to determine locations of hydrometeor-based hazards. A product for Icing Hazards Level (IHL) is expected to benefit the FAA. LL has partnered with Valparaiso University (VU) in northern Indiana near Chicago since 2008 to study the evolution of winter storms prior to the NEXRAD dual polarization upgrade. VU contributes to the study a C-band dual polarization weather radar, an on-demand local sounding capability, and a surface winter weather verification team. Additionally, the Wolcott, IN wind profiler is about 70 km south within viewing range of the VU radar, and provides information on the fall speeds of the hydrometeors of interest. This resource-rich location has allowed for substantive study of many winter storm types: synoptic, lake effect, and frontal passages. A key to development of the IHL product is the ability to interpret dual polarization radar signatures from the winter microphysical states and precipitation structures. Evolution of the structures is a response to the microphysical water and ice saturation (sub or super) states. The magnitude of the vertical lift may affect the saturation states. Methods to segregate the radar signatures will be important regarding the inferred presence of a supercooled water icing hazard. The blizzard of Feb. 1 and 2, 2011 produced four distinct precipitation periods (snow, sleet, freezing drizzle, and lake effect snow), all of which will be discussed. The paper and presentation will also detail findings from the study of multiple winter storms and how they inform the development of the IHL product.
READ LESS

Summary

The Next Generation Weather Radar (NEXRAD) dual polarization upgrade has begun adding a functional enhancement to classify hydrometeors. MIT Lincoln Laboratory (LL) develops NEXRAD-based weather radar products for Federal Aviation Administration (FAA) weather systems such as Corridor Integrated Weather System (CIWS), Integrated Terminal Weather System (ITWS), and Weather and Radar...

READ MORE

A field demonstration of the air traffic control Tower Flight Data Manager prototype

Published in:
HFES 2011, Human Factors and Ergonomics Society 55th Annual Mtg., 19-23 September 2011, p. 61-65.

Summary

The development and evaluation process of the Tower Flight Data Manager prototype at Dallas Ft. Worth airport is described. Key results from the first field evaluation are presented, including lessons learned about making electronic flight information acceptable to controllers. Iteration of the field evaluation methods are discussed for practitioner benefit.
READ LESS

Summary

The development and evaluation process of the Tower Flight Data Manager prototype at Dallas Ft. Worth airport is described. Key results from the first field evaluation are presented, including lessons learned about making electronic flight information acceptable to controllers. Iteration of the field evaluation methods are discussed for practitioner benefit.

READ MORE

Concept of operations for the Integrated Departure Route Planning (IDRP) tool

Published in:
MIT Lincoln Laboratory Report ATC-379

Summary

A concept of operations for the Integrated Departure Route Planner (IDRP) tool is proposed to address issues in the area of departure route management. By combining information about weather and departure demand, IDRP can both identify potential demand/capacity imbalances and recommend a rerouting option, if appropriate. To effectively implement IDRP into the operational environment, a twophase approach is suggested. The first phase appends IDRP functionality onto the CIWS/RAPT platform, combining departure demand information with the convective weather information, creating a live prototype. This initial phase allows a gradual introduction of functionality into an existing display and enables the gathering of operational data to appropriately evolve IDRP to phase 2. The second phase involves introducing airline route preferences, along with any operational improvements discovered during the initial phase.
READ LESS

Summary

A concept of operations for the Integrated Departure Route Planner (IDRP) tool is proposed to address issues in the area of departure route management. By combining information about weather and departure demand, IDRP can both identify potential demand/capacity imbalances and recommend a rerouting option, if appropriate. To effectively implement IDRP...

READ MORE

Convective weather avoidance modeling in low-altitude airspace

Published in:
AIAA Modeling and Simulation Technologies Conf., 8-11 August 2011.

Summary

Thunderstorms are a leading cause of delay in the National Airspace System (NAS), and significant research has been conducted to predict the areas pilots will avoid during a storm. An example of such research is the Convective Weather Avoidance Model (CWAM), which provides the likelihood of pilot deviation due to convective weather in a given area. This paper extends the scope of CWAM to include low-altitude flights, which typically occur below the tops of convective weather and have slightly different operational constraints. In general, the set of low-altitude flights includes short-hop routes and low-altitude escape routes used to reduce the impact of convective weather in the terminal area. This paper will discuss the classification procedure, present the performance of low-altitude CWAM on observed and forecasted weather, analyze areas of poor performance, and suggest potential improvements to the model.
READ LESS

Summary

Thunderstorms are a leading cause of delay in the National Airspace System (NAS), and significant research has been conducted to predict the areas pilots will avoid during a storm. An example of such research is the Convective Weather Avoidance Model (CWAM), which provides the likelihood of pilot deviation due to...

READ MORE

Update on COSPA storm forecasts

Summary

Air traffic congestion in the United States (US) is a serious national problem resulting in a critical need for timely, reliable and high quality forecasts of precipitation and echo tops with forecast time horizons of up to 8 hours. In order to address the short-term needs of the Federal Aviation Administration (FAA) as well as the long-term goals of the US's Next Generation Airspace System (NextGen), MIT Lincoln Laboratory, NCAR Research Applications Laboratory and NOAA Earth Systems Research Laboratory (ESRL) Global Systems Division (GSD) are collaborating on developing a forecast system under funding from the FAA's Aviation Weather Research Program (AWRP). The CoSPA system combines the latest technologies in heuristic nowcasting, extrapolation, statistical techniques and numerical weather prediction to produce rapidly updating (15 min) 0-8 hour forecasts of storm locations, echo tops and intensities. The system blends highly-skillful heuristic nowcasts with output from NOAA's High Resolution Rapid Refresh (HRRR) using phase correction and statistical weighting functions. The CoSPA 0-8 hour forecasts are accessible to the aviation community via an operational situation display and a website that builds upon the FAA's Corridor Integrated Weather System (CIWS) and shows current time situational awareness products including: VIL, echo tops, lightning, growth and decay, forecasts and verification contours, as well as an animation of the weather from 8 hours in the past to 8 hours into the future. This presentation will include a brief description of the CoSPA forecast system and display, examples of forecast performance, and provide an overview of recent enhancements to CoSPA as well as ongoing research.
READ LESS

Summary

Air traffic congestion in the United States (US) is a serious national problem resulting in a critical need for timely, reliable and high quality forecasts of precipitation and echo tops with forecast time horizons of up to 8 hours. In order to address the short-term needs of the Federal Aviation...

READ MORE

Analytical workload model for estimating en route sector capacity in convective weather

Published in:
9th USA/Europe Air Traffic Management Research and Development Sem., ATM 2011, 14-17 June 2011.

Summary

We have extended an analytical workload model for estimating en route sector capacity to include the impact of convective weather. We use historical weather avoidance data to characterize weather blockage, which affects the sector workload in three ways: (1) Increase in the conflict resolution task rate via reduction in available airspace, (2) increase in the recurring task load through the rerouting of aircraft around weather, and (3) increase in the inter-sector coordination rate via reduction in the mean sector transit time. Application of the extended model to observed and forecast data shows promise for future use in network flow models.
READ LESS

Summary

We have extended an analytical workload model for estimating en route sector capacity to include the impact of convective weather. We use historical weather avoidance data to characterize weather blockage, which affects the sector workload in three ways: (1) Increase in the conflict resolution task rate via reduction in available...

READ MORE

European and U.S. perspectives on the sharing and integration of weather information into ATM decisions

Published in:
ATM2011, 9th USA/Europe Air Traffic Management Research and Development Seminar, 14 June 2011.

Summary

Weather is a major source of operational air traffic delays, accounting for 25 to 70 percent of all delays dependent of the geographical region. In today's Air Traffic Management (ATM) systems, a variety of weather information is available to help tactical and strategic planners better anticipate weather events that impact airspace capacity. Regretfully, the information is not always shared amongst all the stakeholders involved or well integrated into the existing ATM environment. This paper describes the high-level concepts for an improved sharing and integration or weather information into Air Traffic Management Decisions, as well as the current state and anticipated capabilities or the underlying information Management infrastructure.
READ LESS

Summary

Weather is a major source of operational air traffic delays, accounting for 25 to 70 percent of all delays dependent of the geographical region. In today's Air Traffic Management (ATM) systems, a variety of weather information is available to help tactical and strategic planners better anticipate weather events that impact...

READ MORE

Convective weather avoidance modeling for low-altitude routes

Published in:
MIT Lincoln Laboratory Report ATC-376

Summary

Thunderstorms are a leading cause of delay in the National Airspace System (NAS), and significant research has been conducted to predict the areas pilots will avoid during a storm. An example of such research is the Convective Weather Avoidance Model (CWAM), which provides the likelihood of pilot deviation due to convective weather in a given area. This report extends the scope of CWAM to include low-altitude flights, which typically occur below the tops of convective weather and have slightly differentoperational constraints. In general, the set of low-altitude flights include short-hop routes and low-altitude escape routes used to reduce the impact of convective weather in the termnial area. For classification, low altitude flights are identified as either deviations or non-deviations, and the corresponding weather features are analyzed. Precipitation intensity is observed to be the best predictor of deviation in the low-altitude flight regime, as compared to the differenc ein altitude between the flight and the echo tops for en route flights. Additionally, the low-altitude CWAM performs better than the departure CWAM currently used in the Route Availability Planning Tool (RAPT) when tested on deterministic weather data.
READ LESS

Summary

Thunderstorms are a leading cause of delay in the National Airspace System (NAS), and significant research has been conducted to predict the areas pilots will avoid during a storm. An example of such research is the Convective Weather Avoidance Model (CWAM), which provides the likelihood of pilot deviation due to...

READ MORE

Uses for field communication data in designing air traffic management decision support

Published in:
10th Conf. on Naturalistic Decision Making, 31 May 2011.

Summary

In this paper, example uses of field communication data are provided and how these data impact the evolution of the Route Availability Planning Tool (RAPT) for air traffic management is introduced. Simple communications analyses are provided that illustrate how communications can be used to improve what decision support is provided, who it is provided to, and in what context to present the support. Communications data is also shown to aid in contextualizing the decision support to better fit within the decision support framework in existence, which is critical to the success of situation awareness systems.
READ LESS

Summary

In this paper, example uses of field communication data are provided and how these data impact the evolution of the Route Availability Planning Tool (RAPT) for air traffic management is introduced. Simple communications analyses are provided that illustrate how communications can be used to improve what decision support is provided...

READ MORE

Making departure management weather impact models airspace-adaptable: adapting the New York Route Availability Planning Tool (RAPT) to Chicago departure airspace

Summary

The Route Availability Planning Tool (RAPT) operational prototype was deployed to Chicago in the summer of 2010, the first RAPT deployment outside of the New York departure airspace for which it was originally developed. The goal of the deployment was to evaluate the adaptability of RAPT's airspace definition, departure management and weather impact models to different terminal areas throughout the National Airspace System (NAS). This report presents the results of a summer-long evaluation of the Chicago RAPT operational prototype, in which the performance of RAPT algorithms and the effectiveness of the RAPT Concept of Operations were assessed. The evaluation included observations made by researchers simultaneously stationed at O'Hare terminal (ORD), the Chicago TRACON (C90), and the Chicago Air Route Traffic Control Center (ZAU) during several days of convective weather impact and post-event analysis of air traffic data from the Enhanced Traffic Management System (ETMS) and RAPT weather impact predictions and departure management guidance. The study found that significant departure delay reduction could be achieved through the use of RAPT in Chicago, and that RAPT effectiveness in "typical" corner post airspaces like Chicago could be further increased with some modifications to the Concept of Operations, user training, and site adaptation.
READ LESS

Summary

The Route Availability Planning Tool (RAPT) operational prototype was deployed to Chicago in the summer of 2010, the first RAPT deployment outside of the New York departure airspace for which it was originally developed. The goal of the deployment was to evaluate the adaptability of RAPT's airspace definition, departure management...

READ MORE