Publications
Tagged As
Photothermal speckle modulation for noncontact materials characterization
Summary
Summary
We have developed a noncontact, photothermal materials characterization method based on visible-light speckle imaging. This technique is applied to remotely measure the infrared absorption spectra of materials and to discriminate materials based on their thermal conductivities. A wavelength-tunable (7.5-8.7 um), intensity-modulated, quantum cascade pump laser and a continuous-wave 532 nm...
Evaluation of the baseline NEXRAD icing hazard project
Summary
Summary
MIT Lincoln Laboratory has developed an icing hazard product that is now operational throughout the NEXRAD network. This initial version of the Icing Hazard Levels (IHL) algorithm is predicated on the presence of graupel as determined by the NEXRAD Hydrometeor Classification Algorithm (HCA). Graupel indicates that rime accretion on ice...
Aircraft in situ validation of hydrometeors and icing conditions inferred by ground-based NEXRAD polarimetric radar
Summary
Summary
MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated...
Measurements of differential reflectivity in snowstorms and warm season stratiform systems
Summary
Summary
The organized behavior of differential radar reflectivity (ZDR) is documented in the cold regions of a wide variety of stratiform precipitation types occurring in both winter and summer. The radar targets and attendant cloud microphysical conditions are interpreted within the context of measurements of ice crystal types in laboratory diffusion...
Validation of NEXRAD radar differential reflectivity in snowstorms with airborne microphysical measurements: evidence for hexagonal flat plate crystals
Summary
Summary
This study is concerned with the use of cloud microphysical aircraft measurements (the Convair 580) to verify the origin of differential reflectivity (ZDR) measured with a ground-based radar (the WSR-88D KBUF radar in Buffalo, New York). The underlying goal is to make use of the radar measurements to infer the...
Retroreflectors for remote readout of colorimetric sensors
Summary
Summary
We have developed a remote detection system consisting of commercially available retroreflective material coated with an analyte-specific colorimetric dye. Quantitative performance modeling predicts that, given the appropriate indicator dye, a system with a 10 cm optic and eye-safe illumination should be capable of detecting small droplets of contamination at kilometer...
Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence
Summary
Summary
High-sensitivity (ng/cm2) optical detection of the explosive 2,4,6- trinitrotoluene (TNT) is demonstrated using photodissociation followed by laser-induced fluorescence (PD-LIF). Detection occurs rapidly, within 6 laser pulses (~7 ns each) at a range of 15 cm. Dropcasting is used to create calibrated samples covering a wide range of TNT concentrations; and...
Development of dual polarization aviation weather products for the FAA
Summary
Summary
Weather radar products from the United States' NEXRAD network are used as key components in FAA weather systems such as CIWS, ITWS, and WARP. The key products, High Resolution VIL (HRVIL) and High Resolution Enhanced Echo Tops (HREET), provide primary information about precipitation location and intensity. The NEXRAD network will...
A novel method for remotely detecting trace explosives
Summary
Summary
The development of a technique with the ability to detect trace quantities of explosives at a distance is of critical importance. In numerous situations when explosive devices are prepared, transported, or otherwise handled, quantifiable amounts of the explosive material end up on surfaces. Rapid detection of these chemical residues in...
Proton irradiations of large area Hg(1-x)Cd(x)Te photovoltaic detectors for the cross-track infrared sounder
Summary
Summary
The effect of radiation on Hg(1-x)Cd(x)Te photodiodes is an important parameter to understand when determining the long-term performance limitations for the Cross-track Infrared Sounder (CrIS), a Fourier Transform interferometric sensor that will fly as part of the National Polar-orbiting Operational Enviornmental Satellite System (NPOESS). The CrIS sensor uses relatively large...