Publications

Refine Results

(Filters Applied) Clear All

Proficiency testing for imaging and audio enhancement: guidelines for evaluation

Published in:
Int. Assoc. of Forensic Sciences, IAFS, 21-26 July 2008.

Summary

Proficiency tests in the forensic sciences are vital in the accreditation and quality assurance process. Most commercially available proficiency testing is available for examiners in the traditional forensic disciplines, such as latent prints, drug analysis, DNA, questioned documents, etc. Each of these disciplines is identification based. There are other forensic disciplines, however, where the output of the examination is not an identification of a person or substance. Two such disciplines are audio enhancement and video/image enhancement.
READ LESS

Summary

Proficiency tests in the forensic sciences are vital in the accreditation and quality assurance process. Most commercially available proficiency testing is available for examiners in the traditional forensic disciplines, such as latent prints, drug analysis, DNA, questioned documents, etc. Each of these disciplines is identification based. There are other forensic...

READ MORE

Detecting asteroids with a multi-hypothesis velocity matched filter

Published in:
ACM 2008, 10th Asteroids, Comets Meteors Mtg., 14-18 July 2008.

Summary

We present a novel approach to image processing for optical detection of faint asteroids. Traditional methods of asteroid detection require observations in multiple frames taken over a period of time, but are limited by the signal-to-noise ratio in a single frame. Our approach is based on a velocity matched filter (VMF), which combines the signal from multiple frames in order to increase the aggregate SNR for dim objects. By generating a series of hypotheses about the apparent velocities of potential objects, we create a set of highly sensitive velocity-specific filters, the results of which are combined to achieve complete coverage of the search space. Each filter collapses a set of sidereal frames into a single frame through a shifted sum operation, thus aggregating the signal from the entire frameset and increasing SNR for objects matching the hypothesized velocity. We also present additional signal processing steps designed to filter out a variety of noise sources such as stars, spacecraft, and background gradients.
READ LESS

Summary

We present a novel approach to image processing for optical detection of faint asteroids. Traditional methods of asteroid detection require observations in multiple frames taken over a period of time, but are limited by the signal-to-noise ratio in a single frame. Our approach is based on a velocity matched filter...

READ MORE

PVTOL: providing productivity, performance, and portability to DoD signal processing applications on multicore processors

Published in:
DoD HPCMP 2008, High Performance Computing Modernization Program Users Group Conf., 14 July 2008, pp. 327-333.

Summary

PVTOL provides an object-oriented C++ API that hides the complexity of multicore architectures within a PGAS programming model, improving programmer productivity. Tasks and conduits enable data flow patterns such as pipelining and round-robining. Hierarchical maps concisely describe how to allocate hierarchical arrays across processor and memory hierarchies and provide a simple API for moving data across these hierarchies. Functors encapsulate computational kernels; new functors can be easily developed using the PVTOL API and can be fused for more efficient computation. Existing computation and communication technologies that are optimized for various architectures are used to achieve high performance. PVTOL abstracts the details of the underlying processor architectures to provide portability. We are actively developing PVTOL for Intel, PowerPC and Cell architectures and intend to add support for more computational kernels on these architectures. FPGAs are becoming popular for accelerating computation in both the high performance computing (HPC) and high performance embedded computing (HPEC) communities. Integrated processor-FPGA technologies are now available from both HPC and HPEC vendors, e.g. Cray and Mercury Computer Systems. We plan to support FPGAs as co-processors in PVTOL. Finally, automated mapping technology has been demonstrated with pMatlab. We plan to begin implementing automated mapping in PVTOL next year. Similar to PVL, as PVTOL matures and is used in more projects at Lincoln, we plan to propose concepts demonstrated in PVTOL to HPEC-SI for adoption into future versions of VSIPL++.
READ LESS

Summary

PVTOL provides an object-oriented C++ API that hides the complexity of multicore architectures within a PGAS programming model, improving programmer productivity. Tasks and conduits enable data flow patterns such as pipelining and round-robining. Hierarchical maps concisely describe how to allocate hierarchical arrays across processor and memory hierarchies and provide a...

READ MORE

Higher order cochlea-like channelizing filters

Published in:
IEEE Trans. Microw. Theory Tech., Vol. 56, No. 7, July 2008, pp. 1675-1683.

Summary

A design method is presented for contiguous-channel multiplexing filters with many channels covering a wide bandwidth. The circuit topology extends previous work on cochlea-like channelizers by introducing multiple resonator-channel filter sections. The new design provides increased stopband rejection, lower insertion loss, and improved passband shape compared with the earlier version while retaining a simple design method and a compact layout, and requires no post-fabrication tuning. Results of a three-pole ten-channel channelizer covering from 182 MHz to 1.13 GHz with 17.5% bandwidth channels and 1.1-dB insertion loss are presented, and agree well with theory. A discussion of the power handling of planar channelizers is also presented.
READ LESS

Summary

A design method is presented for contiguous-channel multiplexing filters with many channels covering a wide bandwidth. The circuit topology extends previous work on cochlea-like channelizers by introducing multiple resonator-channel filter sections. The new design provides increased stopband rejection, lower insertion loss, and improved passband shape compared with the earlier version...

READ MORE

Multicore programming in pMatlab using distributed arrays

Author:
Published in:
CLADE '08: Proceedings of the 6th international workshop on Challenges of large applications in distributed environments

Summary

Matlab is one of the most commonly used languages for scientific computing with approximately one million users worldwide. Many of the programs written in matlab can benefit from the increased performance offered by multicore processors and parallel computing clusters. The Lincoln pMatlab library (http://www.ll.mit.edu/pMatlab) allows high performance parallel programs to be written quickly using the distributed arrays programming paradigm. This talk provides an introduction to distributed arrays programming and will describe the best programming practices for using distributed arrays to produce programs that perform well on multicore processors and parallel computing clusters. These practices include understanding the concepts of parallel concurrency vs. parallel data locality
READ LESS

Summary

Matlab is one of the most commonly used languages for scientific computing with approximately one million users worldwide. Many of the programs written in matlab can benefit from the increased performance offered by multicore processors and parallel computing clusters. The Lincoln pMatlab library (http://www.ll.mit.edu/pMatlab) allows high performance parallel programs to...

READ MORE

Reliable large format arrays of Geiger-mode avalanche photodiodes

Published in:
IPRM 2008, 20th Int. Conf. on Indium Phosphide and Related Materials, 25-29 May 2008.
Topic:

Summary

The fabrication of reliable InP-based Geigermode avalanche photodiode arrays is described. Arrays of up to 256 x 64 elements have been produced and mated to silicon read-out circuits forming single-photon infrared focal plane imagers for 1.06 and 1.5 mum applications.
READ LESS

Summary

The fabrication of reliable InP-based Geigermode avalanche photodiode arrays is described. Arrays of up to 256 x 64 elements have been produced and mated to silicon read-out circuits forming single-photon infrared focal plane imagers for 1.06 and 1.5 mum applications.

READ MORE

Bridging the gap between linguists and technology developers: large-scale, sociolinguistic annotation for dialect and speaker recognition

Published in:
Proc. 6th Int. Conf. on Language Resources and Evaluation, LREC, 28 May 2008.

Summary

Recent years have seen increased interest within the speaker recognition community in high-level features including, for example, lexical choice, idiomatic expressions or syntactic structures. The promise of speaker recognition in forensic applications drives development toward systems robust to channel differences by selecting features inherently robust to channel difference. Within the language recognition community, there is growing interest in differentiating not only languages but also mutually intelligible dialects of a single language. Decades of research in dialectology suggest that high-level features can enable systems to cluster speakers according to the dialects they speak. The Phanotics (Phonetic Annotation of Typicality in Conversational Speech) project seeks to identify high-level features characteristic of American dialects, annotate a corpus for these features, use the data to dialect recognition systems and also use the categorization to create better models for speaker recognition. The data, once published, should be useful to other developers of speaker and dialect recognition systems and to dialectologists and sociolinguists. We expect the methods will generalize well beyond the speakers, dialects, and languages discussed here and should, if successful, provide a model for how linguists and technology developers can collaborate in the future for the benefit of both groups and toward a deeper understanding of how languages vary and change.
READ LESS

Summary

Recent years have seen increased interest within the speaker recognition community in high-level features including, for example, lexical choice, idiomatic expressions or syntactic structures. The promise of speaker recognition in forensic applications drives development toward systems robust to channel differences by selecting features inherently robust to channel difference. Within the...

READ MORE

Geiger-mode quad-cell array for adaptive optics

Published in:
CLEO-QELS, 2008 Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf., 4-9 May 2008.

Summary

We report an array of Shack-Hartmann wavefront sensors using high-fill-factor Geiger-mode avalanche detector quad cells hybridized to all-digital CMOS counting circuits. The absence of readout noise facilitates fast wavefront sensing at low light levels.
READ LESS

Summary

We report an array of Shack-Hartmann wavefront sensors using high-fill-factor Geiger-mode avalanche detector quad cells hybridized to all-digital CMOS counting circuits. The absence of readout noise facilitates fast wavefront sensing at low light levels.

READ MORE

Encounter modeling for sense and avoid deployment

Published in:
2008 Integrated Communications, Navigation, and Surveillence Conf., 5-7 May 2008.

Summary

Integrating unmanned aircraft into civil airspace requires the development and certification of systems for sensing and avoiding other aircraft. Because such systems are typically very complex and a high-level of safety must be maintained, rigorous analysis is required before they can be certified for operational use. As part of the certification process, collision avoidance systems need to be evaluated across millions of randomly generated close encounters that are representative of actual operations. New encounter models are under development that capture changes that have occurred in U.S. airspace since earlier models were developed in the 1980s and 1990s. These models capture the characteristics of small, General Aviation aircraft that may not be receiving Air Traffic Control services as well as typically larger aircraft that are squawking a discrete transponder code. Both models allow dynamic changes in airspeed, vertical rates, and turn rates in a way that was not possible previously. This paper describes the process used to construct the encounter models, how the models may be used in the development of sense-and-avoid systems for unmanned aircraft, and their application in an analysis of an electro-optical system for collision avoidance.
READ LESS

Summary

Integrating unmanned aircraft into civil airspace requires the development and certification of systems for sensing and avoiding other aircraft. Because such systems are typically very complex and a high-level of safety must be maintained, rigorous analysis is required before they can be certified for operational use. As part of the...

READ MORE

Slab-coupled optical waveguide photodiode

Published in:
CLEO-QELS, 2008 Conf. on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conf., 4-9 May 2008.
Topic:

Summary

We report the first high-current photodiode based on the slab-coupled optical waveguide concept. The device has a large mode (5.8 x 7.6 um) and ultra-low optical confinement ([] ~ 0.05%), allowing a 2-mm absorption length. The maximum photocurrent obtained was 250 mA (R = 0.8-A/W) at 1.55 um.
READ LESS

Summary

We report the first high-current photodiode based on the slab-coupled optical waveguide concept. The device has a large mode (5.8 x 7.6 um) and ultra-low optical confinement ([] ~ 0.05%), allowing a 2-mm absorption length. The maximum photocurrent obtained was 250 mA (R = 0.8-A/W) at 1.55 um.

READ MORE