Publications

Refine Results

(Filters Applied) Clear All

Learning from incidents - what the machine can learn

Published in:
Int. Society of Air Safety Investigators Conf., ISASI, 2-6 October 2000.

Summary

Aviation weather refers to any type of weather that can affect the operation of an aircraft – anything from a brief delay in departure to a catastrophic accident during flight. Wind shear and events associated with convective weather were recognized as an aviation hazard long before Dr. Theodore Fujita began publishing his now-famous treatises. On July 28, 1943, American Airlines Flight 63 from Cleveland, Ohio, USA to Nashville, Tennessee crashed after the pilot lost control of the Douglas DC3. The pilots and numerous passengers were fatally injured. The aircraft was destroyed by impact and post crash fire. The weather report at the time included warnings for storms, heavy rain, lightning and severe turbulence. The Civil Aeronautics Board found that the probable cause was a loss of control of the aircraft due to unusually severe turbulence and violent downdraft caused by a thunderstorm. In the ten-year period from 1987 through 1996, 24% of all U.S. accidents were judged to be "weather related". For the twenty-year period 1976 to 1996 fully 43% of U.S. accidents were judged to have involved wind or wind shear, and 2.3 % thunderstorm, although the two data elements are not mutually exclusive. In the U.S., approximately 82% of accidents are general aviation; the rest are air carriers and commuters of various types. When general aviation accidents are negated, and only air carriers are considered, wind and wind shear issues account for 9.5% of accidents. The Weather Systems Processor (WSP) has been developed to reduce the impact of severe weather conditions on air traffic by providing information concerning weather conditions in the airport terminal environment. WSP provides warnings to air traffic controllers and supervisors of hazardous wind shear and microburst events in the terminal area, forecasts the arrival of gust fronts, and tracks thunderstorms, providing a complete picture of current and future terminal area hazardous weather conditions that may impact runway and airport usage. Common weather situation awareness allows Terminal Approach, Tower Controllers and other traffic management personnel to jointly plan with confidence and safely manage more arrivals and departures with less delay. Knowledge of the location, severity and movement of hazardous weather allows dynamic adjustments to be made in routing aircraft to runways, approach and departure corridors, terminal arrival and departure transition areas (i.e. gate-posts) and other air routes.
READ LESS

Summary

Aviation weather refers to any type of weather that can affect the operation of an aircraft – anything from a brief delay in departure to a catastrophic accident during flight. Wind shear and events associated with convective weather were recognized as an aviation hazard long before Dr. Theodore Fujita began...

READ MORE

Developing a mosiacked gust front detection algorithm for TRACONS with multiple TDWRS

Published in:
Proc. Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 494-498.

Summary

Gust front detection is an important Initial Operational Capability (IOC) of the Integrated Terminal Weather System (ITWS). The Machine Intelligent Gust Front Algorithm (MIGFA) being deployed for ITWS uses multi-dimensional, knowledge-based signal processing techniques to detect and track gust fronts in Terminal Doppler Weather Radar (TDWR) data. Versions of MIGFA have also been developed for the ASR-9 Weather Systems Processor (WSP) and NEXRAD, and within the past year MIGFA was installed as the primary gust front detection algorithm for operational TDWRs throughout the United States. (Not complete.)
READ LESS

Summary

Gust front detection is an important Initial Operational Capability (IOC) of the Integrated Terminal Weather System (ITWS). The Machine Intelligent Gust Front Algorithm (MIGFA) being deployed for ITWS uses multi-dimensional, knowledge-based signal processing techniques to detect and track gust fronts in Terminal Doppler Weather Radar (TDWR) data. Versions of MIGFA...

READ MORE

A study of time-to-fly estimates for RUC and ITWS winds

Author:
Published in:
Proc. Ninth Conf. on Aviation Range and Aerospace Meteorology, 11-15 September 2000, pp. 113-117.

Summary

Automated air traffic decision support tools must compute the time it takes an aircraft to fly along a path. The estimation of Time-To-Fly (TTF) requires accurate knowledge of the wind. Two proposed sources of wind data for the Center-TRACON Automation System (CTAS) developed by NASA are the Rapid Update Cycle (RUC) and the Integrated Terminal Weather System (ITWS). The RUC is a mesoscale numerical weather prediction model run by the National Centers for Environmental Prediction. The ITWS was developed by MIT Lincoln Laboratory for the FAA. The ITWS winds product, Terminal Winds takes in RUC forecasts and refines them using recent local measurements of the wind from Doppler radars, aircraft, and ground stations. This report examines the question: does the use of RUC and ITWS wind fields lead to different Time-To-Fly estimates?
READ LESS

Summary

Automated air traffic decision support tools must compute the time it takes an aircraft to fly along a path. The estimation of Time-To-Fly (TTF) requires accurate knowledge of the wind. Two proposed sources of wind data for the Center-TRACON Automation System (CTAS) developed by NASA are the Rapid Update Cycle...

READ MORE

A meteorological analysis of the American Airlines Flight 1420 accident

Author:
Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 209-211.

Summary

On June 1, 1999, American Airlines flight 1420 , arriving at Little Rock, AR from Dallas-Fort Worth, TX, was involved in a fatal accident upon landing, on runway 4R at Adams Field (LIT). There were eleven casualties, including the pilot, and numerous injuries among the 145 passengers and crew on board. At the time of the accident, 0451 UTC (11:51 PM CDT), severe thunderstorms existed in the vicinity of the airport. These storms were initiated by an approaching cold front and pre-frontal trough and were developmentally aided by veering low-level wind and warm air advection, which helped to further destabilize the atmosphere. This report will focus on the meteorological conditions preceding and immediately following the accident that could have played a contributing role in the crash. However, no theories on the actual cause will be put forth.
READ LESS

Summary

On June 1, 1999, American Airlines flight 1420 , arriving at Little Rock, AR from Dallas-Fort Worth, TX, was involved in a fatal accident upon landing, on runway 4R at Adams Field (LIT). There were eleven casualties, including the pilot, and numerous injuries among the 145 passengers and crew on...

READ MORE

Operational experience with weather products generated through joint use of FAA and NWS weather radar sensors

Author:
Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology and 20th Conf. on Severe Local Storms, 11-15 September 2000, pp. J19-J23.

Summary

In this paper, we describe current joint use of Federal Aviation Administration (FAA) and National Weather Service (NWS) radar sensors to provide operational weather decision support for the FAA, airline operations centers, and NWS forecast offices. The capabilities that have been demonstrated include fully automatic data editing and short term "nowcast" product generation algorithms as well as display of data from the different radars in different windows; direct product distribution to operational decision makers without any intervening meteorologist input; and collaborative decision making between the various parties. The significant use of fully automated product generation algorithms has facilitated flexible, coordinated decision making in real time at many locations simultaneously, without the high personnel costs that would be required to achieve the same weather product generation capability manually through interpretation by experienced radar meteorologist/forecasters. These joint-use capabilities have been demonstrated operationally at the Integrated Terminal Weather System (ITWS) demonstration sites in Memphis, TN, Orlando, FL, Dallas, TX, and Garden City, NY. These sites have provided operational service for the four major terminal areas since 1994.1 Specific capabilities used operationally by FAA- and airline users, which are discussed in the next section, include: 1. Addressing radar data quality issues such as rain attenuation and AP-induced ground clutter contamination, 2. High update rates for detection of rapidly changing weather while also obtaining 3D information on storms, 3. Estimating 3D winds, and 4. Reducing the fraction of phenomena that are not accurately characterized because the radars can directly measure radial velocity only. Section 3 discusses the operational usage of integrated products by NWS forecast offices at the ITVVS demonstration sites. The paper concludes with a summary of the operational uses to date and makes some suggestions for NWS and USAF use of FAA radar sensors in conjunction with NEXt generation weather RADars (NEXRAD).
READ LESS

Summary

In this paper, we describe current joint use of Federal Aviation Administration (FAA) and National Weather Service (NWS) radar sensors to provide operational weather decision support for the FAA, airline operations centers, and NWS forecast offices. The capabilities that have been demonstrated include fully automatic data editing and short term...

READ MORE

Distribution of aviation weather hazard information: low altitude wind shear

Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 499-504.

Summary

Weather Hazard Information distribution is a necessary component for a successful system of weather hazard avoidance for aviation. It is a very important component, but not the only one. In order to be successful, a complete set of components must be included in the system: 1) Accurate Conceptual Model (Appropriate models of the physical process responsible for generating the hazard); 2) Production Infrastructure (System of tools [hardware, software and manpower]; the raw data feeds necessary for production of the hazard information and a standardized message format); 3) Quality Control Infrastructure (System of tools [hardware, software and manpower] & data feeds necessary for identifying and correcting erroneous information immediately); 4) Distribution Infrastructure (A method to relay, in a timely manner, only the information pertinent to the specific user); 5) Policies and Procedures (There must be clearly defined expectations of actions required of the users and recipients of the hazard information); 5) Training (The users and recipients as well as individuals responsible for production and quality control of the information must receive initial and recurrent training regarding actions required). ICAO in their Annex 3, Chapter 7 titled, SIGMET Information, Aerodrome Warnings and Wind Shear Warnings [ICAO 19981, describes in part one such system for weather hazard avoidance. ICAO does a good job defining the necessary production infrastructure. ICAO especially has been successful in defining the standardized message format. The format for SlGMETs is described in detail in Annex 3. But, an international organization Such as ICAO is limited in its scope of influence. Quality control of the SIGMET product and the distribution of the SIGMET is, in large part, beyond ICAO’s control. In addition, the actual weather hazard avoidance policies, procedures and training must be accomplished internally by each individual commercial aviation operator. Since each component listed above is directly dependent on the other five for a successful weather hazard avoidance system, Northwest Airlines (NWA) has chosen to attempt to address all six components of the system internally with use of the NWA Turbulence Plot System (TPS) [Fahey et. al. 2000].
READ LESS

Summary

Weather Hazard Information distribution is a necessary component for a successful system of weather hazard avoidance for aviation. It is a very important component, but not the only one. In order to be successful, a complete set of components must be included in the system: 1) Accurate Conceptual Model (Appropriate...

READ MORE

FAA surveillance radar data as a complement to the WSR-88D network

Author:
Published in:
Proc. Ninth Conf. on Aviation, Range, and Aerospace Meteorology and 20th Conf. on Severe Local Storms, 11-15 September 2000, pp. J35-J39.

Summary

The U.S. Federal Aviation Administration (FAA) operates over 400 C- to L-band surveillance radars-Airport Surveillance Radars (ASRs), Air Route Surveillance Radars (ARSRs) and Terminal Doppler Weather Radars (TDWRs). Current generation terminal and en route aircraft surveillance radars (ASR-9, ASR-11 and ARSR-4) feature dedicated digital processing channels that measure and display precipitation reflectivity. Some of these "weather channels" will be upgraded to measure Doppler velocity, supporting, for example, wind shear detection at air terminals. The Terminal Doppler Weather Radar is a high quality dedicated meteorological surveillance radar deployed near many of the larger airports in the U.S. In this paper we consider how these radars could complement the WSR-88D network in providing a variety of meteorological services to the U.S. public. Potential benefits from a combined radar network would accrue from significantly increased radar density and the more rapid temporal updates of the FAA radars. Convective weather monitoring and forecasting, hydrological measurements and services to aviation are examples of areas where significant improvements could be expected. Section 2 reviews the status of the FAA radars their parameters, locations and capabilities. We also note the progress of various upgrade programs that will increase their weather surveillance capabilities substantially. In Section 3, we discuss benefits that would result from their usage in conjunction with the WSR-88D network. Finally, we discuss technological developments that will facilitate realization of these benefits.
READ LESS

Summary

The U.S. Federal Aviation Administration (FAA) operates over 400 C- to L-band surveillance radars-Airport Surveillance Radars (ASRs), Air Route Surveillance Radars (ARSRs) and Terminal Doppler Weather Radars (TDWRs). Current generation terminal and en route aircraft surveillance radars (ASR-9, ASR-11 and ARSR-4) feature dedicated digital processing channels that measure and display...

READ MORE

Extending the Integrated Terminal Weather System (ITWS) to address urgent terminal area weather needs

Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 153-158.

Summary

Major terminals and the surrounding en route airspace are critical elements of the US National Air System (NAS). A large fraction of the US population lives near these terminals, and the bulk of the hub connecting operations are at these airports as well. Adverse weather in these terminal areas and surrounding en route airspace is a major safety concern for the NAS as well as causing a large fraction of all US aviation delays. The principal weather decision support tool for these terminals is the Integrated Terminal Weather System (ITWS) which commenced full-scale development by the FAA in 1995, with first articles to be deployed shortly. In this paper, we discuss how the initial ITWS operational capability needs to be extended to address performance problems identified in operational use and to meet the many new user needs that have developed in the past five years. The paper proceeds as follows. In Section 2, we provide some necessary background on the ITWS operational capability, followed by a discussion of new capabilities to meet urgent user needs. Section 3 discusses refinements to the initial capability to address problems/issues that have been identified based on five years of operational use of ITWS products from ITWS demonstration systems at eight major airports. Next, we consider extending planned ITWS coverage to other major terminals. The final section summarizes the paper's results and suggests additional studies.
READ LESS

Summary

Major terminals and the surrounding en route airspace are critical elements of the US National Air System (NAS). A large fraction of the US population lives near these terminals, and the bulk of the hub connecting operations are at these airports as well. Adverse weather in these terminal areas and...

READ MORE

Forecast aids to lessen the impact of marine stratus on San Francisco International Airport

Author:
Published in:
Proc. Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 317-322.

Summary

San Francisco International Airport (SFO) is unable to use independent parallel approaches to its closely-spaced parallel runways when marine stratus is present in the approach. Delay programs are imposed to regulate the flow of traffic to match the true arrival capacity of the airport. Failure to forecast accurately the times of onset and dissipation of stratus in the approach results in unnecessary delays, costly airborne holding and diversions, or in wasted capacity as the traffic management planners fail to match the arrival rate to the actual airport capacity. Previous studies have shown that accurate 1-2 hour forecasts of the times of clearing in the approach could provide substantial reductions in the delays and inefficiencies associated with the marine stratus impacts on air traffic at SFO. The San Francisco Marine Stratus Initiative has provided a four-year focus on this problem and has resulted in the development of several forecast algorithms that will aid, the operational forecasting of the dissipation of marine stratus in the approach to SFO (Clark and Wilson, 1997). These algorithms involve new techniques for the analysis of observational data and statistical and dynamical prognosis of the behavior of the marine stratus. This discussion of the design and the performance of these algorithms provides an overview of the status of this project.
READ LESS

Summary

San Francisco International Airport (SFO) is unable to use independent parallel approaches to its closely-spaced parallel runways when marine stratus is present in the approach. Delay programs are imposed to regulate the flow of traffic to match the true arrival capacity of the airport. Failure to forecast accurately the times...

READ MORE

ITWS and ITWS/LLWAS-NE runway alert performance at Dallas-Ft. Worth and Orlando

Published in:
Ninth Conf. on Aviation, Range, and Aerospace Meteorology, 11-15 September 2000, pp. 590-595.

Summary

The Integrated Terminal Weather System (ITWS) provides runway-orientated wind shear and microburst alerts to enhance the safety of flight operations at major U.S. airports. The alerts are reported as either losses or gains of airspeed, representing performance decreasing or performance increasing wind shears. The performance of ITWS as a stand-alone system has been thoroughly documented in previous research. During the 1994 ITWS Demonstration and Validation testing, the probability of detection (POD) and probability of false alarm (PFA) at Memphis (MEM) and Orlando (MCO) for all loss events were > 90 and < 5 percent, respectively, based on single-Doppler truth. The Low-Level Windshear Alert System-Network Expansion (LLWAS-NE) also generates runway alerts in the same format as ITWS. LLWAS-NE is not subject to viewing angle problems such as those experienced by single-Doppler radar. However, false alarms caused by LLWAS-NE sensor failures at some Terminal Doppler Weather Radar (TDWR) sites have reduced user confidence in the system. At those ITWS sites with an LLWAS-NE, the ITWS alerts derived from TDWR data will be integrated with LLWAS-NE alerts, hopefully to improve the performance. The ITWS integration algorithm is identical to the TDWR version, with the exception of a few adaptable parameter changes. The ITWS/LLWAS-NE parameters were modified slightly to account for ITWS and TDWR algorithm performance differences. In this paper, the performance of a stand-alone ITWS and the ITWS/LLWAS-NE integration algorithm at the MCO and Dallas-Ft. Worth (DFW) demonstration sites will be discussed. This assessment is considered unique since the radar and anemometer data were combined to create the runway truth. The focus of this research is to identify the shortcomings of both systems in order to recommend modifications that will improve the integration algorithm performance.
READ LESS

Summary

The Integrated Terminal Weather System (ITWS) provides runway-orientated wind shear and microburst alerts to enhance the safety of flight operations at major U.S. airports. The alerts are reported as either losses or gains of airspeed, representing performance decreasing or performance increasing wind shears. The performance of ITWS as a stand-alone...

READ MORE