Publications

Refine Results

(Filters Applied) Clear All

Role of the aviation weather system in providing a real-time ATC volcanic ash advisory system

Author:
Published in:
5th Conf. on Aviation Weather Systems, 2-6 August 1993.

Summary

Inadvertent engine ingestion of volcanic ash has caused expensive damage to a number of aircraft recently and could have caused accidents in at least two cases [Casadevall, 1993]. Consequently, there is great interest in a real-time air traffic control (ATC) volcanic ash advisory system which could provide timely warnings of operationally significant ash concentrations to planes in flight as well as information for flight planning. The current system (see figure 1) is characterized by non-automatic determination of ash eruption characteristics (especially altitudes) with trajectory analysis based on the National Meteorological Center (NMC) forecast winds being used to provide warnings of future locations. SIGNETS and Airport Weather Advisories are the principal means of providing information on the ash locations to pilots and controllers. After one to three days, volcanic ask from Alaska can be transported over major portions of the US aviation system (figure 2) [Heffter, et al. 1990]. The operational use of the ash trajectory predictions which do not provide information on hazard associated with the ask density has resulted in more frequent disruption of air traffic. The most recent example was an incident on 19 September 1992 where a 17 September eruption from Mt. Spurr in Alaska resulted in a significant disruption of air traffic in the Upper Midwest. A workshop in Washington, DC [Machol, 1993] discussed many of these issues associated with the Spurr disruption and the operational response to ash clouds which had been drifting for several days.
READ LESS

Summary

Inadvertent engine ingestion of volcanic ash has caused expensive damage to a number of aircraft recently and could have caused accidents in at least two cases [Casadevall, 1993]. Consequently, there is great interest in a real-time air traffic control (ATC) volcanic ash advisory system which could provide timely warnings of...

READ MORE

The Integrated Terminal Weather System (ITWS) storm cell information and weather impacted airspace detection algorithm

Published in:
Fifth Int. Conf. on Aviation Weather Systems, 2-6 August 1993, pp. 40-44.

Summary

The Integrated Terminal Weather System (ITWS) is an FAA-sponsored program (Sankey, 1993; Ducot, 1993) whose objective is to acquire data and products from a variety of weather sensors, integrate the data and create aviation weather products for users, such as Air Traffic (AT) controllers and traffic managers, pilots, and airline and airport operations managers. The goal of ITWS is to increase capacity at airports, reduce controller workload, and enhance safety. The objective of the ITWS Storm Cell Information (StoCel) and Weather Impacted Airspace (WIA) Detection products is to identify storm cell characteristics (echo top, echo bottom, presence of heavy rain, hail, etc.) and airspace that pilots are likely to avoid because it contains hazardous weather. The StoCel/WIA products rely on the integration of pencil-beam data and products and Air Surveillance Radar (ASR-9) Weather Channel data. ASR-9 radars are useful because they cover the entire airspace of interest, perform a volume update at roughly 30-second intervals, and will be the weather representation most widely available to the Air Traffic Control (ATC) community. On the other hand, the ASR-9 has a 4.8° fan beam which results in a vertical integration over the depth of a storm, so information on the vertical structure of storms is lost. In addition, the current ASR-9 Weather Channel may produce false weather regions during ducting or anomalous propagation (AP) conditions. Nearby WSR-88D radars also cover the entire airspace of interest and provide indications of storm vertical structure. However, the volume update rate is typically on the order of 5 to 10 minutes, depending on the scanning strategy. TDWR radars perform volume updates about every 2.5 to 3 minutes, but perform sector scans that do not cover the entire airspace. Integration of the data from these various sensors produces a product that is superior to a product based on any single sensor. Field tests of components of this algorithm were conducted at Dallas-Ft. Worth (DFW) and Orlando (MCO) International Airports during the summer of 1993. The objectives of these tests are to evaluate the technical performance of the algorithm and the validate the operational concept. This paper will describe the algorithm, and discuss the operational concept and functional requirements for the product. A summary of the results and experiences of the Summer 1993 field tests, and a preliminary evaluation of the performance of the algorithm based on off-line and real-time tests will be provided at the conference.
READ LESS

Summary

The Integrated Terminal Weather System (ITWS) is an FAA-sponsored program (Sankey, 1993; Ducot, 1993) whose objective is to acquire data and products from a variety of weather sensors, integrate the data and create aviation weather products for users, such as Air Traffic (AT) controllers and traffic managers, pilots, and airline...

READ MORE

Status of the Terminal Doppler Weather Radar with deployment underway

Published in:
Proc. Fifth Int. Conf. on Aviation Weather Systems, 2-6 August 1993, pp. 32-34.

Summary

The Federal Aviation Administration (FAA) initiated the Terminal Doppler Weather Radar (TDWR) program in the mid-1980's in response to the need for improved real-time hazardous weather (especially low-altitude wind shear) surveillance in the terminal area (Turnbull, et al., 1989). The initial focus for the TDWR was to provide reliable, fully automated Doppler radar detection of microbursts and gust fronts and 20-minute warning of wind shifts which could effect runway usage. Subsequent operational demonstrations have shown that the overall terminal situational awareness provided by the TDWR color Geographical Situation Display (GSD) depiction of wind shear locations, weather reflectivity and storm motion also yields substantial improvements in terminal operations efficiency for air traffic managers and for airlines. In this paper, we will describe the current status and deployment strategy for the operational systems and recent results from the extensive testing of the radar system concept and of the weather information dissemination approach.
READ LESS

Summary

The Federal Aviation Administration (FAA) initiated the Terminal Doppler Weather Radar (TDWR) program in the mid-1980's in response to the need for improved real-time hazardous weather (especially low-altitude wind shear) surveillance in the terminal area (Turnbull, et al., 1989). The initial focus for the TDWR was to provide reliable, fully...

READ MORE

Effects of metering precision and terminal controllability on runway throughput

Published in:
Air Traffic Control Q., Vol. 1, No. 3, July 1993, pp. 277-297.

Summary

In order to efficiently use available runway capacity while avoiding undue congestion within terminal airspace, systems of flow control and en route metering have been implemented. Recent work in automation has attempted to extend traffic flow planning to provide precise scheduling of traffic flow within the terminal area itself (from the metering fixes to the runways). The goal of this more detailed terminal scheduling is more efficient runway utilization. This article addresses an important practical question regarding the degree of precision required from the en route portion of such systems in order to allow the terminal scheduler to achieve its throughput benefits. The answer to this question determines the sophistication and rigidity required of en route automation and addresses the question of whether the success of new terminal automation is contingent upon improvements in en route metering. The method of analysis is mathematical modeling and fast-time computer simulation. A crucial parameter is controllability, which expresses the largest flight delay that the terminal scheduling can impose within the airspace available to it. The analysis reveals that achievable run-way utilization depends upon the type of metering employed, the available controllability within the terminal, and the extent to which controllers can be expected to intervene to handle transient peaks in arrival rates that cannot be handled by the automation. The major conclusion of the study is that in order to fully utilize a runway, the standard deviation of the errors in arrival time at the metering fixes should be kept to about half the terminal controllability. For the airports studied, there seems to be sufficient controllability available to allow a terminal scheduler to operate the runways at essentially full capacity when a metering system, even with modest delivery precision, is operating in the en route area.
READ LESS

Summary

In order to efficiently use available runway capacity while avoiding undue congestion within terminal airspace, systems of flow control and en route metering have been implemented. Recent work in automation has attempted to extend traffic flow planning to provide precise scheduling of traffic flow within the terminal area itself (from...

READ MORE

Mode-S data link

Published in:
J. of ATC, June 1993, pp. 34-37.

Summary

Mode-S is an enhancement of the ATCRBS secondary surveillance radar (SSR) system which adds selective interrogation of individual aircraft, monopulse processing of the replies and a digital data link between the ground station and the aircraft. These features result in greatly improved surveillance accuracy, virtual elimination of synchronous garble of the replies from closely spaced aircraft, and provide a high capacity digital communication link for a wide variety of ground/air/ground messages.
READ LESS

Summary

Mode-S is an enhancement of the ATCRBS secondary surveillance radar (SSR) system which adds selective interrogation of individual aircraft, monopulse processing of the replies and a digital data link between the ground station and the aircraft. These features result in greatly improved surveillance accuracy, virtual elimination of synchronous garble of...

READ MORE

LNKnet: Neural network, machine-learning, and statistical software for pattern classification

Published in:
Lincoln Laboratory Journal, Vol. 6, No. 2, Summer/Fall 1993, pp. 249-268.

Summary

Pattern-classification and clustering algorithms are key components of modern information processing systems used to perform tasks such as speech and image recognition, printed-character recognition, medical diagnosis, fault detection, process control, and financial decision making. To simplify the task of applying these types of algorithms in new application areas, we have developed LNKnet-a software package that provides access to more than 20 pattern-classification, clustering, and feature-selection algorithms. Included are the most important algorithms from the fields of neural networks, statistics, machine learning, and artificial intelligence. The algorithms can be trained and tested on separate data or tested with automatic cross-validation. LNKnet runs under the UNM operating system and access to the different algorithms is provided through a graphical point-and-click user interface. Graphical outputs include two-dimensional (2-D) scatter and decision-region plots and 1-D plots of data histograms, classifier outputs, and error rates during training. Parameters of trained classifiers are stored in files from which the parameters can be translated into source-code subroutines (written in the C programming language) that can then be embedded in a user application program. Lincoln Laboratory and other research laboratories have used LNKnet successfully for many diverse applications.
READ LESS

Summary

Pattern-classification and clustering algorithms are key components of modern information processing systems used to perform tasks such as speech and image recognition, printed-character recognition, medical diagnosis, fault detection, process control, and financial decision making. To simplify the task of applying these types of algorithms in new application areas, we have...

READ MORE

ATCRBS Reply Environment at Memphis International Airport

Published in:
MIT Lincoln Laboratory Report ATC-198

Summary

This report demonstrates, through data and analysis, how the airport environment can affect ATCRBS surveillance. The Lincoln Laboratory ATCRBS Monopulse Processing Subsystem was used to collect reply data at Memphis International Airport during March 1991. These data show a correlation between aircraft density, potential reflectors, and ATCRBS reply integrity. The number of replies has been shown to be directly related to multipath from reflecting surface, including taxiing aircraft. Additionally, it is shown that conditions can exist during which not all of the replies from ATCRBS equipped aircraft can be processed when forming target report measurements. Finally, it is shown that the bunching of replies in both time and space can introduce reply decoder overloading.
READ LESS

Summary

This report demonstrates, through data and analysis, how the airport environment can affect ATCRBS surveillance. The Lincoln Laboratory ATCRBS Monopulse Processing Subsystem was used to collect reply data at Memphis International Airport during March 1991. These data show a correlation between aircraft density, potential reflectors, and ATCRBS reply integrity. The...

READ MORE

A shear-based microburst detection algorithm for the Integrated Terminal Weather System (ITWS)

Published in:
26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 667-669.

Summary

This paper explains the initial design of the ITWS microburst detection algorithm and illustrates some early results. The final section concentrates on the plans for algorithm testing and the planned enhancements to its capabilities.
READ LESS

Summary

This paper explains the initial design of the ITWS microburst detection algorithm and illustrates some early results. The final section concentrates on the plans for algorithm testing and the planned enhancements to its capabilities.

READ MORE

A machine intelligent gust front algorithm for Doppler weather radars

Published in:
26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 654-656.

Summary

Gust fronts generated by thunderstorms can seriously affect the safety and efficiency of airport operations. Lincoln Laboratory, under contract with the Federal Aviation Administration (FAA), has had a significant role in the development of two Doppler radar systems that are capable of detecting low altitude wind shears, including gust fronts, in the airport terminal control area. These systems are the latest generation Airport Surveillance Radar, enhanced with a Wind Shear Processor (ASR-98 WSP) and the Terminal Doppler Weather Radar (TDWR).
READ LESS

Summary

Gust fronts generated by thunderstorms can seriously affect the safety and efficiency of airport operations. Lincoln Laboratory, under contract with the Federal Aviation Administration (FAA), has had a significant role in the development of two Doppler radar systems that are capable of detecting low altitude wind shears, including gust fronts...

READ MORE

Quantifying airport terminal area weather surveillance requirements

Published in:
26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 47-49.

Summary

The Federal Aviation Administration (FAA) Terminal Area Surveillance System (TASS) research, engineering, and development program was initiated in part to address future weather sensing needs in the terminal area. By the early 21st century, planned systems such as the Terminal Doppler Weather Radar (TDWR) and Airport Surveillance Radar-9 (ASR-9) will be well into their designed life cycles. Any new terminal weather surveillance system should be designed to address existing deficiencies. Key unmet weather sensing needs include detections of: true 3-dimensional winds (vs. radial component), winds in the absence of precipitation, wake vortices, total lightning, hail, icing conditions, clear air turbulence, hazardous weather cells (with adequate time and space resolution), cloud cover and cloud bases (including layers), fog, and visibility (Runway Visual Range), as well as predictions of: the atmospheric conditions mentioned above, wind shifts, microbursts, tornadoes, and snow/rainfall rates (Evans 1991a, McCarthy 1991). In this paper, we investigate the premise that hazardous weather cells are not currently being measured with adequate time and space resolution in the terminal area. Since a new surveillance system should be based on knowledge of storm dynamics, we have performed a preliminary study of update rate (using rapid scan radar to detect rapidly developing thunderstorms and precursors to the low altitude hazards such as microbursts that they produce. Other aspects of a future radar system such as multi-parameter techniques required to discriminate between ice and water phase precipitation, etc. are not considered.
READ LESS

Summary

The Federal Aviation Administration (FAA) Terminal Area Surveillance System (TASS) research, engineering, and development program was initiated in part to address future weather sensing needs in the terminal area. By the early 21st century, planned systems such as the Terminal Doppler Weather Radar (TDWR) and Airport Surveillance Radar-9 (ASR-9) will...

READ MORE