Publications

Refine Results

(Filters Applied) Clear All

Banshee distribution network benchmark and prototyping platform for hardware-in-the-loop integration of microgrid and device controllers

Summary

This article provides a unique benchmark to integrate and systematically evaluate advanced functionalities of microgrid and downstream device controllers. The article describes Banshee, a real-life power distribution network. It also details a real-time controller hardware-in-the-loop (HIL) prototyping platform to test the responses of the controllers and verify decision-making algorithms. The benchmark aims to address power industry needs for a common basis to integrate and evaluate controllers for the overall microgrid, distributed energy resources (DERs), and protective devices. The test platform will accelerate microgrid deployment, enable standard compliance verification, and further develop and test controllers' functionalities. These contributions will facilitate safe and economical demonstrations of the state-of-the-possible while verifying minimal impact to existing electrical infrastructure. All aspects of the benchmark and platform development including models, configuration files, and documentation are publicly available via the electric power HIL controls collaborative (EPHCC).
READ LESS

Summary

This article provides a unique benchmark to integrate and systematically evaluate advanced functionalities of microgrid and downstream device controllers. The article describes Banshee, a real-life power distribution network. It also details a real-time controller hardware-in-the-loop (HIL) prototyping platform to test the responses of the controllers and verify decision-making algorithms. The...

READ MORE

A neural network approach for waveform generation and selection with multi-mission radar

Published in:
2019 IEEE Radar Conf., 22-26 April 2019.

Summary

Nonlinear frequency modulated (NLFM) pulse compression waveforms have become a mainstream methodology for radars across multiple sectors and missions, including weather observation, target tracking, and target detection. NLFM affords the ability to generate a low-sidelobe autocorrelation function and matched filter while avoiding aggressive amplitude modulation, resulting in more power incident on the target. This capability can lead to significantly lower system design costs due to the possibility of sensitivity gains on the order of 3 dB or more compared with traditional, amplitude-modulated linear frequency modulated (LFM) waveforms. Generation of an optimal NLFM waveform, however, can be an arduous task, and may involve complex optimization and non-closed-form solutions. For a multimission or cognitive radar, which may utilize a wide combination of frequencies, pulse lengths, and amplitude modulations (among other factors), this could lead to an extremely large waveform table for selection. This paper takes a neural network approach to this problem by optimizing a set of over 100 waveforms spanning a wide space and using the results to interpolate the waveform possibilities to a higher resolution. A modified form of a previous NLFM method is combined with a four-hidden-layer neural network to show the integrated and peak range sidelobes of the generated waveforms across the model training space. The results are applicable to multi-mission and cognitive radars that need precise waveform specifications in rapid succession. The expected waveform generation times are addressed and quantified, and the potential applicability to multi-mission and cognitive radars is discussed.
READ LESS

Summary

Nonlinear frequency modulated (NLFM) pulse compression waveforms have become a mainstream methodology for radars across multiple sectors and missions, including weather observation, target tracking, and target detection. NLFM affords the ability to generate a low-sidelobe autocorrelation function and matched filter while avoiding aggressive amplitude modulation, resulting in more power incident...

READ MORE

Modular Aid and Power Pallet (MAPP): FY18 Energy Technical Investment Program

Published in:
MIT Lincoln Laboratory Report TIP-93

Summary

Electric power is a critical element of rapid response disaster relief efforts. Generators currently used have high failure rates and require fuel supply chains, and standardized renewable power systems are not yet available. In addition, none of these systems are designed for easy adaptation or repairs in the field to accommodate changing power needs as the relief effort progresses. To address this, the Modular Aid and Power Pallet, or MAPP, was designed to be a temporary, scalable, self-contained, user-focused power system. While some commercial systems are advertised for disaster relief systems, most are limited by mobility, custom battery assemblies (with challenges for air transport, ground mobility, or both), and the ability to power AC loads. While the first year system focused on an open architecture design with distributed DC units that could be combined to serve larger AC loads, the second year succeeded in minimizing or eliminating batteries while providing AC power for both the distributed and centralized systems. Therefore, individual modules can be distributed to power small AC loads such as laptop charging, or combined in series for larger loads such as water purification. Each module is powered by a small photovoltaic (PV) array connected to a prototype off-grid Enphase microinverter that can be used with or without energy storage. In addition, an output box for larger loads is included to provide a ground fault interrupt, under/over voltage relay, and the ability to change the system grounding to fit the needs of a more complicated system. The second year MAPP effort was divided into two phases: Phase 1 from October 2017 to March 20181 focused on refining requirements and vendor selection, and Phase 2 from March 2018 to October 20182 focusing on power electronics, working with the new Enphase microinverter, and ruggedizing the system. The end result is the Phase 2 effort has been designed, tested, and proven to form a robust AC power source that is flexible and configurable by the end user. Our testing has shown that operators can easily set up the system and adapt it to changing needs in the field.
READ LESS

Summary

Electric power is a critical element of rapid response disaster relief efforts. Generators currently used have high failure rates and require fuel supply chains, and standardized renewable power systems are not yet available. In addition, none of these systems are designed for easy adaptation or repairs in the field to...

READ MORE

Security considerations for next-generation operating systems for cyber-physical systems

Published in:
1st Intl. Workshop on Next-Generation Operating Systems for Cyber-Physical Systems, NGOSCPS, 15 April 2019.

Summary

Cyber-physical systems (CPSs) are increasingly targeted in high-profile cyber attacks. Examples of such attacks include Stuxnet, which targeted nuclear centrifuges; Crashoverride, and Triton, which targeted power grids; and the Mirai botnet, which targeted internet-of-things (IoT) devices such as cameras to carry out a large-scale distributed denial-of-service (DDoS) attack. Such attacks demonstrate the importance of securing current and future cyber-physical systems. Therefore, next-generation operating systems (OSes) for CPS need to be designed to provide security features necessary, as well as be secure in and of themselves. CPSs are designed with one of three broad classes of OSes: (a) bare-metal applications with effectively no operating system, (b) embedded systems executing on impoverished platforms running an embedded or real-time operating system (RTOS) such as FreeRTOS, or (c) more performant platforms running general purpose OSes such as Linux, sometimes tuned for real-time performance such as through the PREEMPT_RT patch. In cases (a) and (b), the OS, if any, is very minimal to facilitate improved resource utilization in real-time or latency-sensitive applications, especially running on impoverished hardware platforms. In such OSes, security is often overlooked, and many important security features (e.g. process/kernel memory isolation) are notably absent. In case (c), the general-purpose OS inherits many of the security-related features that are critical in enterprise and general-purpose applications, such as virtual memory and address-space layout randomization (ASLR). However, the highly complex nature of general-purpose OSes can be problematic in the development of CPSs, as they are highly non-deterministic and difficult to formally reason about for cyber-physical applications, which often have real-time constraints. These issues motivate the need for a next generation OS that is highly capable, predictable and deterministic for real-time performance, but also secure in the face of many of the next generation of cyber threats. In order to design such a next-generation OS, it is necessary to first reflect on the types of threats that CPSs face, including the attacker intentions and types of effects that can be achieved, as well as the type of access that attackers have. While threat models are not the same for all CPSs, it is important to understand how the threat models for CPSs compare to general-purpose or enterprise computing environments. We discuss these issues next (Sec. 2), before providing insights and recommendations for approaches to incorporate in next-generation OSes for CPS in Sec. 3.
READ LESS

Summary

Cyber-physical systems (CPSs) are increasingly targeted in high-profile cyber attacks. Examples of such attacks include Stuxnet, which targeted nuclear centrifuges; Crashoverride, and Triton, which targeted power grids; and the Mirai botnet, which targeted internet-of-things (IoT) devices such as cameras to carry out a large-scale distributed denial-of-service (DDoS) attack. Such attacks...

READ MORE

CW radar operation in the focused near-field

Published in:
2019 Intl. Applied Computational Electromagnetics Society Symp., ACES, 14-19 April 2019.

Summary

In this paper we will show by computer simulation and by measurements that the horn antennas of a bi-static radar operating in the near-field have a distinct maximum at a non-zero range. By focusing the antennas on this hot spot a low-powered, continuous-wave Ku-band radar could detect flying mosquitoes at very short range.
READ LESS

Summary

In this paper we will show by computer simulation and by measurements that the horn antennas of a bi-static radar operating in the near-field have a distinct maximum at a non-zero range. By focusing the antennas on this hot spot a low-powered, continuous-wave Ku-band radar could detect flying mosquitoes at...

READ MORE

Design and analysis framework for trusted and assured microelectronics

Published in:
GOMACTech 2019, 25-28 March 2019.

Summary

An in-depth understanding of microelectronics assurance in Department of Defense (DoD) missions is increasingly important as the DoD continues to address supply chain challenges. Many studies take a "bottom-up" approach, in which vulnerabilities are assessed in terms of general-purpose usage. This is beneficial in developing a general knowledge foundation. However, it does not offer much insight for program managers, technical leads, etc. to determine, for a specific mission and operating environment, the risks and requirements to using a microelectronic device. It is critical to develop a systematic approach that considers mission objectives, as the same component could be used in a weapon system or a surveillance system with significantly different requirements. We have been developing a Trusted and Assured Microelectronics (T&AM) Framework, which considers the entire system life cycle to produce mission-specific metrics and assessments. A radar system exemplar illustrates the approach and how the metric can be used as a Figure of Merit for quantitative analysis during development.
READ LESS

Summary

An in-depth understanding of microelectronics assurance in Department of Defense (DoD) missions is increasingly important as the DoD continues to address supply chain challenges. Many studies take a "bottom-up" approach, in which vulnerabilities are assessed in terms of general-purpose usage. This is beneficial in developing a general knowledge foundation. However...

READ MORE

HARDEN: A high assurance design environment

Summary

Systems resilient to cyber-attacks for mission assurance are difficult to develop, and the means of effectively evaluating them is even harder. We have developed a new architectural design and engineering environment, referred to as HARDEN (High AssuRance Design ENvironment), which supports an agile design methodology used to create secure and resilient systems. This new toolkit facilitates the quantitative analysis of a system's security posture by setting up a systematic approach of securing and analyzing embedded systems. HARDEN promotes the early co-design of functionality and security that now enables the development of mission assured systems.
READ LESS

Summary

Systems resilient to cyber-attacks for mission assurance are difficult to develop, and the means of effectively evaluating them is even harder. We have developed a new architectural design and engineering environment, referred to as HARDEN (High AssuRance Design ENvironment), which supports an agile design methodology used to create secure and...

READ MORE

Understanding Mission-Driven Resiliency Workshop

Summary

MIT Lincoln Laboratory hosted an invitation-only, one-day interdisciplinary workshop entitled
“Understanding Mission-Driven Resiliency” on behalf of the US Air Force, on March 18, 2019 at MIT
Lincoln Laboratory Beaver Works in Cambridge, MA. Participants began to bridge the gap between
government and industry to improve the resiliency of government systems to cyber attacks. The
workshop focused on understanding and defining resiliency from different perspectives and included
five panels devoted to discussing how different industries view and manage resiliency within their
organizations, the sources of resiliency within organizations and software-intensive systems, measuring
resiliency, and building resiliency within an organization or technology stack.
READ LESS

Summary

MIT Lincoln Laboratory hosted an invitation-only, one-day interdisciplinary workshop entitled
“Understanding Mission-Driven Resiliency” on behalf of the US Air Force, on March 18, 2019 at MIT
Lincoln Laboratory Beaver Works in Cambridge, MA. Participants began to bridge the gap between
government and industry to improve the resiliency of government systems...

READ MORE

Discovering the smallest observed near-earth objects with the space surveillance telescope

Summary

The Space Surveillance Telescope (SST) is an advanced optical sensor designed and tested by MIT Lincoln Laboratory for the Defense Advanced Research Projects Agency (DARPA), which is currently in the process of being integrated into the Space Surveillance Network. By operating the telescope in a manner normally intended for the discovery of small, artificial space objects, SST is serendipitously sensitive to the detection of very small asteroids as they traverse close to the Earth, passing rapidly through SST's search volume. This mode of operation stands in contrast to the standard approach for the search and discovery of asteroids and near-Earth objects (NEOs), in which longer revisit times restrict survey sensitivities to objects moving no faster than about 20 degrees/day. From data collected during SST's observation runs in New Mexico, we detail the discovery of 92 new candidate objects in heliocentric orbit whose absolute magnitudes range from H=26.4 to 35.9 (approximately 18-m to 25-cm in size). Some of these discoveries represent the smallest natural objects ever observed in orbit. We compare the candidate objects with bolide observations.
READ LESS

Summary

The Space Surveillance Telescope (SST) is an advanced optical sensor designed and tested by MIT Lincoln Laboratory for the Defense Advanced Research Projects Agency (DARPA), which is currently in the process of being integrated into the Space Surveillance Network. By operating the telescope in a manner normally intended for the...

READ MORE

Weather radar network benefit model for tornadoes

Author:
Published in:
J. Appl. Meteor. Climatol., 22 April 2019, doi:10.1175/JAMC-D-18-0205.1.

Summary

A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement of two key radar parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental results showing faster volume scan rates yielding greater warning performance are also incorporated into the model. Enhanced tornado warning performance, in turn, reduces casualty rates. In addition, lower false alarm ratios save cost by cutting down on work and personal time lost while taking shelter. The model is run on the existing contiguous United States weather radar network as well as hypothetical future configurations. Results show that the current radars provide a tornado-based benefit of ~$490M per year. The remaining benefit pool is about $260M per year that is roughly split evenly between coverage- and rapid-scanning-related gaps.
READ LESS

Summary

A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement of two key radar parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental results...

READ MORE