Publications

Refine Results

(Filters Applied) Clear All

Chip-scale molecular clock

Published in:
IEEE J. Solid-State Circuits, Vol. 54, No. 4, April 2019, pp. 914-26.

Summary

An ultra-stable time-keeping device is presented, which locks its output clock frequency to the rotational-mode transition of polar gaseous molecules. Based on a high-precision spectrometer in the sub-terahertz (THz) range, our new clocking scheme realizes not only fully electronic operation but also implementations using mainstream CMOS technology. Meanwhile, the small wavelength of probing wave and high absorption intensity of our adopted molecules (carbonyl sulfide, 16O12C32S) also enable miniaturization of the gas cell. All these result in an "atomic-clock-grade" frequency reference with small size, power, and cost. This paper provides the architectural and chip-design details of the first proof-of-concept molecular clock using a 65-nm CMOS bulk technology. Using a 231.061-GHz phase-locked loop (PLL) with frequency-shift keying (FSK) modulation and a sub-THz FET detector with integrated lock-in function, the chip probes the accurate transition frequency of carbonyl sulfide (OCS) gas inside a single-mode waveguide, and accordingly adjusts the 80-MHz output of a crystal oscillator. The clock consumes only 66 mW of dc power and has a measured Allan deviation of 3.8 × 10^−10 at an averaging time of tau = 1000 s.
READ LESS

Summary

An ultra-stable time-keeping device is presented, which locks its output clock frequency to the rotational-mode transition of polar gaseous molecules. Based on a high-precision spectrometer in the sub-terahertz (THz) range, our new clocking scheme realizes not only fully electronic operation but also implementations using mainstream CMOS technology. Meanwhile, the small...

READ MORE

Detection and characterization of human trafficking networks using unsupervised scalable text template matching

Summary

Human trafficking is a form of modern-day slavery affecting an estimated 40 million victims worldwide, primarily through the commercial sexual exploitation of women and children. In the last decade, the advertising of victims has moved from the streets to websites on the Internet, providing greater efficiency and anonymity for sex traffickers. This shift has allowed traffickers to list their victims in multiple geographic areas simultaneously, while also improving operational security by using multiple methods of electronic communication with buyers; complicating the ability of law enforcement to disrupt these illicit organizations. In this paper, we address this issue and present a novel unsupervised and scalable template matching algorithm for analyzing and detecting complex organizations operating on adult service websites. The algorithm uses only the advertisement content to uncover signature patterns in text that are indicative of organized activities and organizational structure. We apply this method to a large corpus of adult service advertisements retrieved from backpage.com, and show that the networks identified through the algorithm match well with surrogate truth data derived from phone number networks in the same corpus. Further exploration of the results show that the proposed method provides deeper insights into the complex structures of sex trafficking organizations, not possible through networks derived from phone numbers alone. This method provides a powerful new capability for law enforcement to more completely identify and gather evidence about trafficking networks and their operations.
READ LESS

Summary

Human trafficking is a form of modern-day slavery affecting an estimated 40 million victims worldwide, primarily through the commercial sexual exploitation of women and children. In the last decade, the advertising of victims has moved from the streets to websites on the Internet, providing greater efficiency and anonymity for sex...

READ MORE

Leveraging Intel SGX technology to protect security-sensitive applications

Published in:
17th IEEE Int. Symp. on Network Computing and Applications, NCA, 1-3 November 2018.

Summary

This paper explains the process by which Intel Software Guard Extensions (SGX) can be leveraged into an existing codebase to protect a security-sensitive application. Intel SGX provides user-level applications with hardware-enforced confidentiality and integrity protections and incurs manageable impact on performance. These protections apply to all three phases of the operational data lifecycle: at rest, in use, and in transit. SGX shrinks the trusted computing base (and therefore the attack surface) of the application to only the hardware on the CPU chip and the portion of the application's software that is executed within the protected enclave. The SDK enables SGX integration into existing C/C++ codebases while still ensuring program support for legacy and non-Intel platforms. This paper is the first published work to walk through the step-by-step process of Intel SGX integration with examples and performance results from an actual cryptographic application produced in a standard Linux development environment.
READ LESS

Summary

This paper explains the process by which Intel Software Guard Extensions (SGX) can be leveraged into an existing codebase to protect a security-sensitive application. Intel SGX provides user-level applications with hardware-enforced confidentiality and integrity protections and incurs manageable impact on performance. These protections apply to all three phases of the...

READ MORE

OS independent and hardware-assisted insider threat detection and prevention framework

Summary

Governmental and military institutions harbor critical infrastructure and highly confidential information. Although institutions are investing a lot for protecting their data and assets from possible outsider attacks, insiders are still a distrustful source of information leakage. As malicious software injection is one among many attacks, turning innocent employees into malicious attackers through social attacks is the most impactful one. Malicious insiders or uneducated employees are dangerous for organizations that they are already behind the perimeter protections that guard the digital assets; actually, they are trojans on their own. For an insider, the easiest possible way for creating a hole in security is using the popular and ubiquitous Universal Serial Bus (USB) devices due to its versatile and easy to use plug-and-play nature. USB type storage devices are the biggest threats for contaminating mission critical infrastructure with viruses, malware, and trojans. USB human interface devices are also dangerous as they may connect to a host with destructive hidden functionalities. In this paper, we propose a novel hardware-assisted insider threat detection and prevention framework for the USB case. Our novel framework is also OS independent. We implemented a proof-of-concept design on an FPGA board which is widely used in military settings supporting critical missions, and demonstrated the results considering different experiments. Based on the results of these experiments, we show that our framework can identify rapid-keyboard key-stroke attacks and can easily detect the functionality of the USB device plugged in. We present the resource consumption of our framework on the FPGA for its utilization on a host controller device. We show that our hard-to-tamper framework introduces no overhead in USB communication in terms of user experience.
READ LESS

Summary

Governmental and military institutions harbor critical infrastructure and highly confidential information. Although institutions are investing a lot for protecting their data and assets from possible outsider attacks, insiders are still a distrustful source of information leakage. As malicious software injection is one among many attacks, turning innocent employees into malicious...

READ MORE

Cross-app poisoning in software-defined networking

Published in:
Proc. ACM Conf. on Computer and Communications Security, CCS, 15-18 October 2018, pp. 648-63.

Summary

Software-defined networking (SDN) continues to grow in popularity because of its programmable and extensible control plane realized through network applications (apps). However, apps introduce significant security challenges that can systemically disrupt network operations, since apps must access or modify data in a shared control plane state. If our understanding of how such data propagate within the control plane is inadequate, apps can co-opt other apps, causing them to poison the control plane's integrity. We present a class of SDN control plane integrity attacks that we call cross-app poisoning (CAP), in which an unprivileged app manipulates the shared control plane state to trick a privileged app into taking actions on its behalf. We demonstrate how role-based access control (RBAC) schemes are insufficient for preventing such attacks because they neither track information flow nor enforce information flow control (IFC). We also present a defense, ProvSDN, that uses data provenance to track information flow and serves as an online reference monitor to prevent CAP attacks. We implement ProvSDN on the ONOS SDN controller and demonstrate that information flow can be tracked with low-latency overheads.
READ LESS

Summary

Software-defined networking (SDN) continues to grow in popularity because of its programmable and extensible control plane realized through network applications (apps). However, apps introduce significant security challenges that can systemically disrupt network operations, since apps must access or modify data in a shared control plane state. If our understanding of...

READ MORE

Component standards for stable microgrids

Published in:
IEEE Trans. Power Syst., Vol. 34, No. 2, pp. 852-863. 2018.
R&D group:

Summary

This paper is motivated by the need to ensure fast microgrid stability. Modeling for purposes of establishing stability criterion and possible implementations are described. In particular, this paper proposes that highly heterogeneous microgrids comprising both conventional equipment and equipment based on rapidly emerging new technologies can be modeled as purely electric networks in order to provide intuitive insight into the issues of network stability. It is shown that the proposed model is valid for representing fast primary dynamics of diverse components (gensets, loads, PVs), assuming that slower variables are regulated by the higher-level controllers. Based on this modeling approach, an intuitively-appealing criterion is introduced requiring that components or their combined representations must behave as closed-loop passive electrical circuits. Implementing this criterion is illustrated using typical commercial feeder microgrid. Notably, these set the basis for standards which should be required for groups of components (sub grids) to ensure no fast instabilities in complex microgrids. Building the need for incrementally passive and monotonic characteristics into standards for network components may clarify the system level analysis and integration of microgrids.
READ LESS

Summary

This paper is motivated by the need to ensure fast microgrid stability. Modeling for purposes of establishing stability criterion and possible implementations are described. In particular, this paper proposes that highly heterogeneous microgrids comprising both conventional equipment and equipment based on rapidly emerging new technologies can be modeled as purely...

READ MORE

Designing secure and resilient embedded avionics systems

Summary

With an increased reliance on Unmanned Aerial Systems (UAS) as mission assets and the dependency of UAS on cyber resources, cyber security of UAS must be improved by adopting sound security principles and relevant technologies from the computing community. On the other hand, the traditional avionics community, being aware of the importance of cyber security, is looking at new architecture and designs that can accommodate both the safety oriented principles as well as the cyber security principles and techniques. The Air Force Research Laboratories (AFRL) Information Directorate has created the Agile Resilient Embedded System (ARES) program to investigate mitigations that offer a method to "design-in" cyber protections while maintaining mission assurance. ARES specifically seeks to 'build security in' for unmanned aerial vehicles incorporating security and hardening best practices, while inserting resilience as a system attribute to maintain a level of system operation despite successful exploitation of residual vulnerabilities.
READ LESS

Summary

With an increased reliance on Unmanned Aerial Systems (UAS) as mission assets and the dependency of UAS on cyber resources, cyber security of UAS must be improved by adopting sound security principles and relevant technologies from the computing community. On the other hand, the traditional avionics community, being aware of...

READ MORE

Hyperscaling internet graph analysis with D4M on the MIT SuperCloud

Summary

Detecting anomalous behavior in network traffic is a major challenge due to the volume and velocity of network traffic. For example, a 10 Gigabit Ethernet connection can generate over 50 MB/s of packet headers. For global network providers, this challenge can be amplified by many orders of magnitude. Development of novel computer network traffic analytics requires: high level programming environments, massive amount of packet capture (PCAP) data, and diverse data products for "at scale" algorithm pipeline development. D4M (Dynamic Distributed Dimensional Data Model) combines the power of sparse linear algebra, associative arrays, parallel processing, and distributed databases (such as SciDB and Apache Accumulo) to provide a scalable data and computation system that addresses the big data problems associated with network analytics development. Combining D4M with the MIT SuperCloud manycore processors and parallel storage system enables network analysts to interactively process massive amounts of data in minutes. To demonstrate these capabilities, we have implemented a representative analytics pipeline in D4M and benchmarked it on 96 hours of Gigabit PCAP data with MIT SuperCloud. The entire pipeline from uncompressing the raw files to database ingest was implemented in 135 lines of D4M code and achieved speedups of over 20,000.
READ LESS

Summary

Detecting anomalous behavior in network traffic is a major challenge due to the volume and velocity of network traffic. For example, a 10 Gigabit Ethernet connection can generate over 50 MB/s of packet headers. For global network providers, this challenge can be amplified by many orders of magnitude. Development of...

READ MORE

High performance computing techniques with power systems simulations

Published in:
IEEE High Performance Extreme Computing Conf., HPEC, 25-27 September 2018.
R&D group:

Summary

Small electrical networks (i.e., microgrids) and machine models (synchronous generators, induction motors) can be simulated fairly easily, on sequential processes. However, running a large simulation on a single process becomes infeasible because of complexity and timing issues. Scalability becomes an increasingly important issue for larger simulations, and the platform for running such large simulations, like the MIT Supercloud, becomes more important. The distributed computing network used to simulate an electrical network as the physical system presents new challenges, however. Different simulation models, different time steps, and different computation times for each process in the distributed computing network introduce new challenges not present with typical problems that are addressed with high performance computing techniques. A distributed computing network is established for some example electrical networks, and then adjustments are made in the parallel simulation set-up to alleviate the new kinds of challenges that come with modeling and simulating a physical system as diverse as an electrical network. Also, methods are shown to simulate the same electrical network in hundreds of milliseconds, as opposed to several seconds--a dramatic speedup once the simulation is parallelized.
READ LESS

Summary

Small electrical networks (i.e., microgrids) and machine models (synchronous generators, induction motors) can be simulated fairly easily, on sequential processes. However, running a large simulation on a single process becomes infeasible because of complexity and timing issues. Scalability becomes an increasingly important issue for larger simulations, and the platform for...

READ MORE

Functionality and security co-design environment for embedded systems

Published in:
IEEE High Performance Extreme Computing Conf., HPEC, 25-27 September 2018.

Summary

For decades, embedded systems, ranging from intelligence, surveillance, and reconnaissance (ISR) sensors to electronic warfare and electronic signal intelligence systems, have been an integral part of U.S. Department of Defense (DoD) mission systems. These embedded systems are increasingly the targets of deliberate and sophisticated attacks. Developers thus need to focus equally on functionality and security in both hardware and software development. For critical missions, these systems must be entrusted to perform their intended functions, prevent attacks, and even operate with resilience under attacks. The processor in a critical system must thus provide not only a root of trust, but also a foundation to monitor mission functions, detect anomalies, and perform recovery. We have developed a Lincoln Asymmetric Multicore Processing (LAMP) architecture, which mitigates adversarial cyber effects with separation and cryptography and provides a foundation to build a resilient embedded system. We will describe a design environment that we have created to enable the co-design of functionality and security for mission assurance.
READ LESS

Summary

For decades, embedded systems, ranging from intelligence, surveillance, and reconnaissance (ISR) sensors to electronic warfare and electronic signal intelligence systems, have been an integral part of U.S. Department of Defense (DoD) mission systems. These embedded systems are increasingly the targets of deliberate and sophisticated attacks. Developers thus need to focus...

READ MORE