Publications
Potential benefits of reducing wake-related aircraft spacing at the Dallas/Fort Worth International Airport
Summary
Summary
Measurements and modeling of wake vortices reveal that the Federal Aviation Administration's (FAA) minimum separation requirements for departing aircraft are often overly conservative. If the separation times following heavy aircraft can be safely reduced, considerable savings will be realized. The Dallas/Fort Worth International Airport (DFW) experiences departure delays daily. Banks...
ASR-9 Weather Systems Processor (WSP) signal processing algorithms
Summary
Summary
Thunderstorm activity and associated low-altitude wind shear constitute a significant safety hazard to aviation, particularly during operations near airport terminals where aircraft altitude is low and flight routes are constrained. The Federal Aviation Administration (FAA) has procured several dedicated meteorological sensors (Terminal Doppler Weather Radar (TDWR), Network Expansion Low Level...
Machine intelligent gust front algorithm for the WSP
Summary
Summary
The Machine Intelligent Gust Front Algorithm (MIGFA) utilizes multi-dimensional image processing and fuzzy logic techniques to identify gust fronts in Doppler radar data generated by the ASR-9 Weather Systems Processor (WSP). The algorithm generates products that support both safety and planning functions for ATC. Outputs include current and predicted locations...
A comparison of boundary layer wind estimation techniques
Summary
Summary
Accurate, short-term (0-2 hour) forecasts of convective initiation provide critical information about weather that has a major impact on aviation safety and system capacity. The Terminal Convective Weather Forecast (TCWF) algorithm is a key component of the FAA's operational Integrated Terminal Weather System (ITWS). Convective forecasts rely, in part, upon...
Using ORPG to enhance NEXRAD products to support FAA critical systems
Summary
Summary
The initial release of a new operational open architecture is currently being phased into the national WSR-88D (NEXRAD) radar network. This new Common Operations and Development Environment (CODE) includes the Open Radar Product Generator (ORPG) that replaces the existing NEXRAD Radar Product Generator. The new ORPG includes all the algorithms...
An automated, operational two hour convective weather forecast for the Corridor Integrated Weather
Summary
Summary
The FAA Aviation Weather Research Program (AWRP) is an initiative of the Weather and Flight Service Systems Integrated Product Team, AUA400. One of the goals of the AWRP is to create accurate and accessible forecasts of hazardous weather tailored to the needs of the aviation community. Pursuant to this goal...
An improved gust front detection capability for the ASR-9 WSP
Summary
Summary
The Weather Systems Processor (WSP) is being deployed by FAA at 35 medium and high-density ASR-9 equipped airports across the United States. The Machine Intelligent Gust Front Algorithm (MIGFA) developed at Lincoln Laboratory provides important gust front detection and tracking capability for this system as well as other FAA systems...
Enhancement to Terminal Doppler Weather Radar to improve aviation weather services
Summary
Summary
This paper has described work underway to enhance the TDWRs capability to provide wind shear detection services in challenging conditions, and to provide a flexible platform with COTS hardware that would support future improvements. A Radar Data Acquisition (RDA) system retrofit will upgrade the transmitter, receiver and digital signal processing...
Forecasting convective weather using multi-scale detectors and weather Classification - enhancements to the MIT Lincoln Laboratory Terminal Weather Forecast
Summary
Summary
Over the past decade the United States has seen drastic increases in air traffic delays resulting in enormous economic loses. Analysis shows that more then 50% of air traffic delays are due to convective weather. In response the FAA has assembled scientific and engineering teams from MIT Lincoln Laboratory, NCAR...
The 2001 demonstration of automated cloud forecast guidance products for San Francisco International Airport
Summary
Summary
A system for providing cloud prediction guidance to aviation weather forecasters was demonstrated during the summer of 2001. The system was sponsored by the FAA, and developed by MIT Lincoln Laboratory in collaboration with SJSU, the University of Quebec at Montreal, Penn State University, and the Central Weather Service Unit...