Publications

Refine Results

(Filters Applied) Clear All

Gaussian mixture models

Published in:
Article in Encyclopedia of Biometrics, 2009, pp. 659-63. DOI: https://doi.org/10.1007/978-0-387-73003-5_196

Summary

A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted sum of Gaussian component densities. GMMs are commonly used as a parametric model of the probability distribution of continuous measurements or features in a biometric system, such as vocal-tract related spectral features in a speaker recognition system. GMM parameters are estimated from training data using the iterative Expectation-Maximization (EM) algorithm or Maximum A Posteriori (MAP) estimation from a well-trained prior model.
READ LESS

Summary

A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted sum of Gaussian component densities. GMMs are commonly used as a parametric model of the probability distribution of continuous measurements or features in a biometric system, such as vocal-tract related spectral features in a speaker...

READ MORE

High-productivity software development with pMATLAB

Published in:
Comput. Sci. Eng., Vol. 11, No. 1, January/February 2009, pp. 75-79.

Summary

In this paper, we explore the ease of tackling a communication-intensive parallel computing task - namely, the 2D fast Fourier transform (FFT). We start with a simple serial Matlab code, explore in detail a ID parallel FFT, and illustrate how it can be extended to multidimensional FFTs.
READ LESS

Summary

In this paper, we explore the ease of tackling a communication-intensive parallel computing task - namely, the 2D fast Fourier transform (FFT). We start with a simple serial Matlab code, explore in detail a ID parallel FFT, and illustrate how it can be extended to multidimensional FFTs.

READ MORE

Low-resource speech translation of Urdu to English using semi-supervised part-of-speech tagging and transliteration

Author:
Published in:
SLT 2008, IEEE Spoken Language Technology Workshop 2008, 15-10 December 2008, pp. 265-268.

Summary

This paper describes the construction of ASR and MT systems for translation of speech from Urdu into English. As both Urdu pronunciation lexicons and Urdu-English bitexts are sparse, we employ several techniques that make use of semi-supervised annotation to improve ASR and MT training. Specifically, we describe 1) the construction of a semi-supervised HMM-based part-of-speech tagger that is used to train factored translation models and 2) the use of an HMM-based transliterator from which we derive a spelling-to-pronunciation model for Urdu used in ASR training. We describe experiments performed for both ASR and MT training in the context of the Urdu-to-English task of the NIST MT08 Evaluation and we compare methods making use of additional annotation with standard statistical MT and ASR baselines.
READ LESS

Summary

This paper describes the construction of ASR and MT systems for translation of speech from Urdu into English. As both Urdu pronunciation lexicons and Urdu-English bitexts are sparse, we employ several techniques that make use of semi-supervised annotation to improve ASR and MT training. Specifically, we describe 1) the construction...

READ MORE

Initial studies of an objective model to forecast achievable airspace flow program throughput from current and forecast weather information

Published in:
MIT Lincoln Laboratory Report ATC-343

Summary

Airspace capacity constraints caused by adverse weather are a major driver for enhanced Traffic Flow Management (TFM) capabilities. One of the most prominent TFM initiatives introduced in recent years is the Airspace Flow Program (AFP). AFPs are used to plan and manage flights through airspace constrained by severe weather. An AFP is deployed using "strategic" (i.e., 4-6 hour) weather forecasts to determine AFP traffic throughput rates. These rates are set for hourly periods. However, as convective weather continuously evolves, the achievable en route airspace throughput can fluctuate significantly over periods as short as 15-30 minutes. Thus, without tactical AFP adjustments, inefficiencies in available airspace usage can arise, often resulting in increased air traffic delay. An analysis of AFP usage in 2007 was conducted in order to (1) better understand the relationship between AFP parameters and convective weather characteristics, and (2) assess the potential use of an objective model for forecasting tactical AFP throughput. An en route airway blockage-based algorithm, using tactical forecast information from the Corridor Integrated Weather System (CIWS), has been developed in order to objectively forecast achievable flow rates through AFP boundaries during convective weather. A description of the model and preliminary model results are presented.
READ LESS

Summary

Airspace capacity constraints caused by adverse weather are a major driver for enhanced Traffic Flow Management (TFM) capabilities. One of the most prominent TFM initiatives introduced in recent years is the Airspace Flow Program (AFP). AFPs are used to plan and manage flights through airspace constrained by severe weather. An...

READ MORE

A novel method for remotely detecting trace explosives

Published in:
Lincoln Laboratory Journal, Vol. 17, No. 2, December 2008, pp. 27-40.

Summary

The development of a technique with the ability to detect trace quantities of explosives at a distance is of critical importance. In numerous situations when explosive devices are prepared, transported, or otherwise handled, quantifiable amounts of the explosive material end up on surfaces. Rapid detection of these chemical residues in a noninvasive standoff manner would serve as an indicator for attempts at concealed assembly or transport of explosive materials and devices. We are investigating the use of a fluorescence-based technique to achieve the necessary detection sensitivity.
READ LESS

Summary

The development of a technique with the ability to detect trace quantities of explosives at a distance is of critical importance. In numerous situations when explosive devices are prepared, transported, or otherwise handled, quantifiable amounts of the explosive material end up on surfaces. Rapid detection of these chemical residues in...

READ MORE

New methods to transport fluids in micro-sized devices

Published in:
Lincoln Laboratory Journal, Vol. 17, No. 2, December 2008, pp. 70-80.

Summary

Applications of microfluidics require a self-contained, active pumping system in which the package size is comparable to the volume of fluid being transported. Over the past decade, several systems have been developed to address this issue, but either these systems have high power requirements or the microfabrication is too complex to be cost efficient. A recent effort at Lincoln Laboratory using an emerging technology called electrowetting has led to the development of several novel micropump concepts for pumping liquids continuously, as well as for pumping discrete volumes.
READ LESS

Summary

Applications of microfluidics require a self-contained, active pumping system in which the package size is comparable to the volume of fluid being transported. Over the past decade, several systems have been developed to address this issue, but either these systems have high power requirements or the microfabrication is too complex...

READ MORE

A comprehensive aircraft encounter model of the National Airspace System

Published in:
Lincoln Laboratory Journal, Vol. 17, No. 2, December 2008, pp. 41-54.

Summary

Collision avoidance systems play an important role in the future of aviation safety. Before new technologies on board manned or unmanned aircraft are deployed, rigorous analysis using encounter simulations is required to prove system robustness. These simulations rely on models that accurately reflect the geometries and dynamics of aircraft encounters at close range. These types of encounter models have been developed by several organizations since the early 1980s. Lincoln Laboratory's newer encounter models, however, provide a higher-fidelity representation of encounters, are based on substantially more radar data, leverage a theoretical framework for finding optimal model structures, and reflect recent changes in the airspace.
READ LESS

Summary

Collision avoidance systems play an important role in the future of aviation safety. Before new technologies on board manned or unmanned aircraft are deployed, rigorous analysis using encounter simulations is required to prove system robustness. These simulations rely on models that accurately reflect the geometries and dynamics of aircraft encounters...

READ MORE

Automatic dependent surveillance-broadcast in the Gulf of Mexico

Published in:
Lincoln Laboratory Journal, Vol. 17, No. 2, December 2008, pp. 55-69.

Summary

The Federal Aviation Administration is adopting Automatic Dependent Surveillance-Broadcast (ADS-B) to provide surveillance in the National Airspace System (NAS). Aircraft separation services are currently provided by a system of en route and terminal radars, and the performance of these radars in part dictates the separation distance required between aircraft. ADS-B is designed to provide comparable service in areas where no radar coverage exists. It will eventually be the primary surveillance source in the NAS, if it is proven to provide performance equal to or better than radar.
READ LESS

Summary

The Federal Aviation Administration is adopting Automatic Dependent Surveillance-Broadcast (ADS-B) to provide surveillance in the National Airspace System (NAS). Aircraft separation services are currently provided by a system of en route and terminal radars, and the performance of these radars in part dictates the separation distance required between aircraft. ADS-B...

READ MORE

GROK secure multi-user chat at Red Flag 2007-03

Summary

This paper describes the GROK Secure Chat experimental activity performed by MIT Lincoln Laboratory at USAF Red Flag 2007-03 exercises and its results.
READ LESS

Summary

This paper describes the GROK Secure Chat experimental activity performed by MIT Lincoln Laboratory at USAF Red Flag 2007-03 exercises and its results.

READ MORE

Uncorrelated encounter model of the National Airspace System version 1.0

Published in:
MIT Lincoln Laboratory Report ATC-345

Summary

Airspace encounter models, covering close encounter situations that may occur after standard separation assurance has been lost, are a critical component in the safety assessment of aviation procedures and collision avoidance systems. Of particular relevance to Unmanned Aircraft Systems (UAS) is the potential for encountering general aviation aircraft that are flying under Visual Flight Rules (VFR) and which may not be in contact with air traffic control. In response to the need to develop a model of these types of encounters, Lincoln Laboratory undertook an extensive radar data collection and modeling effort involving more than 120 sensors across the U.S. This report describes the structure and content of that encounter model. The model is based on the use of Bayesian networks to represent relationships between dynamic variables and to construct random aircraft trajectories that are statistically similar to those observed in the radar data. The result is a framework from which representative intruder trajectories can be generated and used in fast-time Monte Carlo simulations to provide accurate estimates of collision risk. The model described in this report is one of three developed by Lincoln Laboratory. An encounter with an intruder that does not have a transponder, or between two aircraft using a Mode A code of 1200 (VFR), is uncorrelated in the sense that it is unlikely that there would be prior intervention by air traffic control. The uncorrelated model described in this report is based on transponder-equipped aircraft using a 1200 (VFR) Mode A code observed by radars across the U.S. As determined from a comparison against primary-only tracks, in addition to representing VFR-on-VFR encounters, this model is representative of encounters between a cooperative aircraft and conventional noncooperative aircraft similar to those that use a 1200 transponder code. A second uncorrelated model is also being developed for unconventional aircraft that have different flight characteristics than 1200-code aircraft. Finally, a correlated encounter model has been developed to represent situations in which it is likely that there would be air traffic control intervention prior to a close encounter. The correlated model applies to intruders that are using a discrete (non-1200) code. Separate electronic files are available from Lincoln Laboratory that contain the statistical data required to generate and validate encounter trajectories. Details on how to interpret the data file and an example of how to randomly construct trajectories are provided in Appendices A and B, respectively. A Matlab software package is also available to generate random encounter trajectories based on the data tables. A byproduct of the encounter modeling effort was the development of National aircraft track and traffic density databases. Example plots of traffic density data are provided in this report, but the complete track and density databases are not provided in electronic form due to their size and the complexity of processing specific locations, altitudes, and times.
READ LESS

Summary

Airspace encounter models, covering close encounter situations that may occur after standard separation assurance has been lost, are a critical component in the safety assessment of aviation procedures and collision avoidance systems. Of particular relevance to Unmanned Aircraft Systems (UAS) is the potential for encountering general aviation aircraft that are...

READ MORE