Publications

Refine Results

(Filters Applied) Clear All

Integration of high-speed surface-channel charge coupled devices into an SOI CMOS process using strong phase shift lithography

Published in:
SPIE Vol. 6924, Optical Microlithography XXI, 26-27 February 2008, pp. 69244R.

Summary

To enable development of novel signal processing circuits, a high-speed surface-channel charge coupled device (CCD) process has been co-integrated with the Lincoln Laboratory 180-nm RF fully depleted silicon-on-insulator (FDSOI) CMOS technology. The CCDs support charge transfer clock speeds in excess of 1 GHz while maintaining high charge transfer efficiency (CTE). Both the CCD and CMOS gates are formed using a single-poly process, with CCD gates isolated by a narrow phase-shift-defined gap. CTE is strongly dependent on tight control of the gap critical dimension (CD). In this paper we review the tradeoffs encountered in the co-integration of the CCD and CMOS technologies. The effect of partial coherence on gap resolution and pattern fidelity is discussed. The impact of asymmetric bias due to phase error and phase shift mask (PSM) sidewall effects is presented, along with adopted mitigation strategies. Issues relating to CMOS pattern fidelity and CD control in the double patterning process are also discussed. Since some signal processing CCD structures involve two-dimensional transfer paths, many required geometries present phase compliance and trim engineering challenges. Approaches for implementing noncompliant geometries, such as T shapes, are described, and the impact of various techniques on electrical performance is discussed.
READ LESS

Summary

To enable development of novel signal processing circuits, a high-speed surface-channel charge coupled device (CCD) process has been co-integrated with the Lincoln Laboratory 180-nm RF fully depleted silicon-on-insulator (FDSOI) CMOS technology. The CCDs support charge transfer clock speeds in excess of 1 GHz while maintaining high charge transfer efficiency (CTE)...

READ MORE

Polymer matrix effects on acid generation

Published in:
SPIE Vol. 6923, Advances in Resist Materials and Processing Technology XXV, 24-29 February 2008, 692319.

Summary

We have measured the acid generation efficiency with EUV exposure of a PAG in different polymer matrixes representing the main classes of resist polymers as well as some previously described fluoropolymers for lithographic applications. The polymer matrix was found to have a significant effect on the acid generation efficiency of the PAG studied. A linear relationship exists between the absorbance of the resist and the acid generation efficiency. A second inverse relationship exists between Dill C and aromatic content of the resist polymer. It was shown that polymer sensitization is important for acid generation with EUV exposure and the Dill C parameter can be increased by up to five times with highly absorbing non-aromatic polymers, such as non-aromatic fluoropolymers, over an ESCAP polymer. The increase in the Dill C value will lead to an up to five fold increase in resist sensitivity. It is our expectation that these insights into the nature of polymer matrix effects on acid generation could lead to increased sensitivity for EUV resists.
READ LESS

Summary

We have measured the acid generation efficiency with EUV exposure of a PAG in different polymer matrixes representing the main classes of resist polymers as well as some previously described fluoropolymers for lithographic applications. The polymer matrix was found to have a significant effect on the acid generation efficiency of...

READ MORE

X-band receiver front-end chip in silicon germanium technology

Published in:
2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 23-25 January 2008.

Summary

This paper reports a demonstration of X-band receiver RF front-end components and the integrated chipset implemented in 0.18 mum silicon germanium (SiGe) technology. The system architecture consists of a single down conversion from X-band at the input to S-band at the intermediate frequency (IF) output. The microwave monolithic integrated circuit (MMIC) includes an X-band low noise amplifier, lead-lag splitter, balanced amplifiers, double balanced mixer, absorptive filter, and an IF amplifier. The integrated chip achieved greater than 30 dB of gain and less than 6 dB of noise figure.
READ LESS

Summary

This paper reports a demonstration of X-band receiver RF front-end components and the integrated chipset implemented in 0.18 mum silicon germanium (SiGe) technology. The system architecture consists of a single down conversion from X-band at the input to S-band at the intermediate frequency (IF) output. The microwave monolithic integrated circuit...

READ MORE

Design approaches for digitally dominated active pixel sensors: leveraging Moore's law scaling in focal plane readout design

Summary

Although CMOS technology scaling has provided tremendous power and circuit density benefits for innumerable applications, focal plane array (FPA) readouts have largely been left behind due to dynamic range and signal-to-noise considerations. However, if an appropriate pixel front end can be constructed to interface with a mostly digital pixel, it is possible to develop sensor architectures for which performance scales favorably with advancing technology nodes. Although the front-end design must be optimized to interface with a particular detector, the dominant back end architecture provides considerable potential for design reuse. In this work, digitally dominated long wave infrared (LWIR) active pixel sensors with cutoff wavelengths between 9 and 14.5 um are demonstrated. Two ROIC designs are discussed, each fabricated in a 90-nm digital CMOS process and implementing a 256 x 256 pixel array on a 30-um pitch. In one of the implemented designs, the feasibility of implementing a 15-um pixel pitch FPA with a 500 million electron effective well depth, less than 0.5% non-linearity in the target range and a measured NEdT of less than 50 mK at f/4 and 60 K is demonstrated. Simple on-FPA signal processing allows for a much reduced readout bandwidth requirement with these architectures. To demonstrate the potential for commonality that is offered by a digitally dominated architecture, this LWIR sensor design is compared and contrasted with other digital focal plane architectures. Opportunities and challenges for application of this approach to various detector technologies, optical wavelength ranges and systems are discussed.
READ LESS

Summary

Although CMOS technology scaling has provided tremendous power and circuit density benefits for innumerable applications, focal plane array (FPA) readouts have largely been left behind due to dynamic range and signal-to-noise considerations. However, if an appropriate pixel front end can be constructed to interface with a mostly digital pixel, it...

READ MORE

Cloud-to-ground lightning as a proxy for nowcasts of VIL and echo tops

Published in:
13th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 20-24 January 2008.

Summary

The primary fields that provide weather situational awareness in the Corridor Integrated Weather System (CIWS) are radar-derived vertically-integrated liquid (VIL) and echo top height (ET). In situations of reduced or non-existent radar coverage, such as over the oceans, in mountainous terrain or during periods of radar outages, the radar VIL and ET fields are severely compromised or even absent. In these situations, the lightning data are often unaffected and fully available to use as a proxy for the radar fields in convective weather nowcasts. The purpose of this study is to develop the capability to utilize cloud-to-ground lightning strike data as a proxy for radar VIL and echo tops (ET) in the CIWS. The datasets used in this study are the National Lightning Detection Network (NLDN) and the 1 km/5min radar VIL and ET mosaics produced at MIT LL. To capture the synoptic variability of the lightning-VIL and lightning-ET relationships over the CIWS domain, atmospheric variables from the NOAA Rapid Update Cycle (RUC) model and the Space-time Mesoscale Analysis System (STMAS) are utilized with the lightning data in a statistical regression framework. Once spatially and temporally coherent regions of VIL and ET derived from the lightning are produced, the potential exists for tracking these regions and providing accurate short-term forecasting of convective hazards.
READ LESS

Summary

The primary fields that provide weather situational awareness in the Corridor Integrated Weather System (CIWS) are radar-derived vertically-integrated liquid (VIL) and echo top height (ET). In situations of reduced or non-existent radar coverage, such as over the oceans, in mountainous terrain or during periods of radar outages, the radar VIL...

READ MORE

Comparative analysis of terminal wind-shear detection systems

Published in:
13th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 20-24 January 2008.

Summary

Low-level wind shear, especially a microburst, is very hazardous to aircraft departing or approaching an airport. The danger became especially clear in a series of fatal commercial airliner accidents in the 1970s and 1980s at U.S. airports. In response, the Federal Aviation Agency (FAA) developed and deployed three ground-based low-altitude wind-shear detection systems: the Low Altitude Wind Shear Alert System (LLWAS) (Wilson and Gramzow 1991), the Terminal Doppler Weather Radar (TDWR) (Michelson et al. 1990), and the Airport Surveillance Radar Weather Systems Processor (ASR-9 WSP) (Weber and Stone 1995). Since the deployment of these sensors, commercial aircraft wind-shear accidents have dropped to near zero in the U.S. This dramatic decrease in accidents caused by wind shear appears to confirm the safety benefits provided by these detection systems. In addition, the broad area measurement capability of the TDWR and WSP provides ancillary delay reduction benefits, for example, by forecasting airport wind shifts that may require runway reconfiguration. The current deployment strategy for these various windshear detection systems is justified by an earlier integrated wind-shear systems cost-benefit analysis (Martin Marietta 1994). Since that time, conditions in the national airspace system (NAS) have evolved, such as the installation of onboard predictive wind-shear detection systems in an increasing number of aircraft, improved pilot training for wind-shear hazard identification, avoidance, and recovery, and further integration of observed wind-shear data into terminal weather systems. Given the tight fiscal environment at the FAA in recent years, the cost of maintaining the wind-shear detection systems has also become an issue. All systems require periodic service life extension programs (SLEPs). In light of these developments, the FAA has tasked MIT Lincoln Laboratory to provide an updated cost-benefit study on their terminal wind-shear detection systems. One of the key factors in estimating the benefits of a terminal wind-shear detection system is its performance. Thus, it is necessary to quantify the wind-shear detection probability for each sensor, preferably on an airport-by-airport basis. To consider sensors that are not yet deployed, a model must be developed that takes into account the various effects that factor into the detection probability. We have developed such a model. The focus of this paper is on this model and the results obtained with it.
READ LESS

Summary

Low-level wind shear, especially a microburst, is very hazardous to aircraft departing or approaching an airport. The danger became especially clear in a series of fatal commercial airliner accidents in the 1970s and 1980s at U.S. airports. In response, the Federal Aviation Agency (FAA) developed and deployed three ground-based low-altitude...

READ MORE

Comparison of Rapid Update Cycle (RUC) model crosswinds with LIDAR crosswind measurements at St. Louis Lambert International Airport

Published in:
13th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 20-24 January 2008.

Summary

Turbulence associated with wake vortices generated by arriving and departing aircraft pose a potential safety risk to other nearby aircraft, and as such this potential risk may apply to aircraft operating on Closely Spaced Parallel Runways (CSPRs). To take wake vortex behavior into account, current aircraft departing/landing standards require a safe distance behind the wake generating aircraft at which operations can be conducted. The Federal Aviation Administration (FAA) and National Aeronautics and Space Administration (NASA) have initiated an improved wake avoidance solution, referred to as Wake Turbulence Mitigation for Departures (WTMD). The process is designed to safely increase runway capacity via actively monitoring wind conditions that impact wake behavior (Hallock, et al., 1998; Lang et al., 2005). An important component of WTMD is a Wind Forecast Algorithm (WFA) being developed by MIT Lincoln Laboratory (Cole & Winkler, 2004). The WFA predicts runway crosswinds from the surface up to a height of approximately ~300 m (1000 ft) once per minute and thus forecasts when winds favorable for WTMD will persist long enough for safe procedures for a particular runway (Lang et al., 2007). The algorithm uses 1–4 hr wind forecasts from the Rapid Update Cycle (RUC) model operated by the National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction (NOAA/NCEP) for upper atmospheric wind profiles. Detailed description of the RUC model can be found elsewhere (Benjamin et al., 1994; 2004a; 2004b). Briefly, the RUC model inputs are assimilations of high frequency observations from a suite of meteorological sensors, including Automated Surface Observing System (ASOS), rawinsonde profiles, satellite, airborne sensors from commercial aircraft, etc. The vertical layers of the atmosphere are resolved approximately isentropically. The model is run hourly, producing hourly forecasts out to 24 hours. The coverage of the RUC grid includes the continental United States, southern Canada, northern Mexico, and adjacent coastal waters. Here we evaluate the performance of RUC in predicting crosswinds with reliability sufficient to support WTMD. For RUC validation, in situ wind profile data were obtained from a Light Imaging Detection and Ranging (LIDAR) deployed at St. Louis Lambert International Airport (STL). The focus of this study is to provide a general quantitative characterization of the difference between RUC predictions and LIDAR measurements of the runway crosswinds. Particular attention was given to cases with inaccurate RUC crosswind forecasts, and cases when significant horizontal and vertical shears occur during situations of convective weather or proximity to large scale weather features, e.g., air mass fronts. (In practice, WTMD procedures and existing weather sources in the Control Tower will manage, to an acceptable level of risk, the hazard exposure associated with the extreme wind shift examples presented here.) Also included was examination of performance degradation with longer RUC forecast horizons and coarser horizontal resolutions, which may be relevant with regard to actual operational forecast data availability, or future applications of the operational concept to include arrival operations. A detailed report for this study is also available (Huang et al., 2007).
READ LESS

Summary

Turbulence associated with wake vortices generated by arriving and departing aircraft pose a potential safety risk to other nearby aircraft, and as such this potential risk may apply to aircraft operating on Closely Spaced Parallel Runways (CSPRs). To take wake vortex behavior into account, current aircraft departing/landing standards require a...

READ MORE

Consolidated storm prediction for aviation (CoSPA)

Published in:
Proc. of the 2008 Integrated Communications, Navigation and Surveillance Conf., 20-24 January 2008.

Summary

Research over the last 10 years primarily funded by the FAA Aviation Weather Research Program (AWRP) has led to very successful development of forecasts of both convective and winter storms, using heuristic and numerical models, for aviation applications. We have reached a point where there are several overlapping capabilities, and the smorgasbord of choices has become confusing. Moreover, aviation-impacting winter and summer conditions can exist simultaneously - even within a single terminal area - so a consolidated forecast must work equally well for all storm conditions. Advances in computing and communications allow incorporation of new observing systems and scientific advancements in data assimilation and modeling toward large-scale, very high resolution forecast systems that were prohibitive just 10 years ago. Other government agencies, in addition to FAA, have needs for aviation-oriented forecasts, including at least the National Weather Service, NASA, Homeland Defense, Air Force and other DoD agencies. Further efficiencies will be realized by consolidating such efforts as well. These goals are well-aligned with the goals of the Next Generation Air Transportation System and its Joint Program and Development Office. The FAA Aviation Weather Research Program is leading development of the new Consolidated Storm Prediction for Aviation (CoSPA) effort, which will combine aviation-oriented storm research in a coordinated fashion, with the goal of eventually replacing operational legacy storm diagnostic and forecast products, as appropriate, that are also geared toward aviation (see Appendix A). While many of the current storm prediction products are derived using NOAA model forecast data, especially from the hourly updated 13-km Rapid Update Cycle (RUC) model over CONUS, CoSPA products will be related to a new generation of NOAA models now assimilating radar reflectivity and lightning, including the Rapid Refresh, its proposed nest - the High-Resolution Rapid Refresh (HRRR), and ensemble-based products from both. A kick-off meeting was held in June 2006 to discuss AWRP?s concepts for a consolidated aviation forecast, and to understand unmet user needs, major scientific development issues, and also to begin to explore issues associated with production and dissemination of a consolidated forecast. These findings are summarized below.
READ LESS

Summary

Research over the last 10 years primarily funded by the FAA Aviation Weather Research Program (AWRP) has led to very successful development of forecasts of both convective and winter storms, using heuristic and numerical models, for aviation applications. We have reached a point where there are several overlapping capabilities, and...

READ MORE

Evaluation of weather impact models in departure management decision support: operational performance of the Route Availability Planning Tool (RAPT) prototype

Published in:
13th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 20-24 January 2008.

Summary

In this paper, the revised RAPT algorithm and display are described and evaluated. The fidelity of the RAPT operational model is assessed by comparing RAPT departure status with observed departure flows (i.e., trajectories, weather avoidance maneuvers and storm penetrations) on several days when convective weather SWAPs were in effect in New York. Real-time in-situ observations at RAPT facilities (described in a companion paper at this conference; Robinson, 2008), user feedback from RAPT playbacks and the REPEAT web site are used to support this post-event evaluation. For example, real time observations provide the time and operational rationale for a specific departure route closure identified in the traffic flow analysis. This information is necessary to identify closures or flow restrictions that are the result of factors outside of the current RAPT algorithm domain (e.g., traffic restrictions due to volume, downstream congestion, etc.). Real time observations are also used to identify specific times when critical, weather-related operational decisions were made. The RAPT guidance at these critical decision points is analyzed to determine if RAPT provided information that enabled (or could have enabled, had it been used) more timely or effective decisions. The effect of forecast uncertainty on RAPT performance is also examined, particularly in convective weather situations where the location, severity and operational impact were difficult to predict. Strategies that mitigated risks associated with forecast uncertainty are presented. These include the use of additional information provided in the RAPT display, such as echo top heights encountered along the departure route, to confirm or modify RAPT guidance and the consideration of the departure status of two or more adjacent routes to 'average out' variations in the departure status timelines.
READ LESS

Summary

In this paper, the revised RAPT algorithm and display are described and evaluated. The fidelity of the RAPT operational model is assessed by comparing RAPT departure status with observed departure flows (i.e., trajectories, weather avoidance maneuvers and storm penetrations) on several days when convective weather SWAPs were in effect in...

READ MORE

Key research issues for near term operational use of integrated convective weather-ATM decision support systems

Author:
Published in:
13th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 20-24 January 2008.

Summary

Thunderstorm-related delays dominate the overall U.S. airspace delay statistics and continue to increase, even though a number of new weather information systems and air traffic management (ATM) decision support tools have been deployed since 1999. Operational decision makers must mitigate the network congestion that arises from rapidly varying capacity loss in both en route and terminal airspace. Improving decision making in such an environment requires explicitly considering airspace structure, network impacts, forecast uncertainty and pilot preferences for weather avoidance. To date, the NextGen initiative has focused on envisioning an operational concept and research agenda for 2025 where it is assumed that aircraft separation and weather avoidance is accomplished using a high degree of automation. In this paper, we consider research to achieve significant improvements in the near term (2010-2015) where aircraft separation is provided largely by controllers and hazardous weather avoidance is accomplished by pilots using visual cues, reports from other aircraft, on board weather radar and ATC advisories. We briefly review the current status of work in key areas and then suggest major near term initiatives. Key elements of the research program to be discussed include: 1. Translation of convective weather products into ATC impacts (including handling of uncertainty in the convective weather forecasts). Initial models for en route pilot avoidance of storms and sector capacity in convective weather have shown promising results, but clearly much more research is needed in this area. 2. Determining when and where available capacity was not appropriately utilized during convective events, based on both facility observations during storm events and computations of avoidable delay. Preliminary results suggest that much of today's delay is in fact avoidable. 3. Developing integrated weather-ATM decision support tools (DST) to enable decision makers to more fully utilize available capacity. The accuracy of contemporary convective weather forecasts is a key issue in the design of such systems. Initial operational experience with a departure decision support tool will be discussed to illustrate key points. 4. Explicitly considering the human side of convective weather ATM [e.g., how individuals make real time decisions in collaboration with other decision makers (e.g., ATC, airlines, dispatch, pilots)]. Recent results from field usage of convective weather decision support tools will be interpreted in the context of recent literature on how people actually make decisions and perform cognitively complex functions in demanding situations.
READ LESS

Summary

Thunderstorm-related delays dominate the overall U.S. airspace delay statistics and continue to increase, even though a number of new weather information systems and air traffic management (ATM) decision support tools have been deployed since 1999. Operational decision makers must mitigate the network congestion that arises from rapidly varying capacity loss...

READ MORE