Publications

Refine Results

(Filters Applied) Clear All

Designing agility and resilience into embedded systems

Summary

Cyber-Physical Systems (CPS) such as Unmanned Aerial Systems (UAS) sense and actuate their environment in pursuit of a mission. The attack surface of these remotely located, sensing and communicating devices is both large, and exposed to adversarial actors, making mission assurance a challenging problem. While best-practice security policies should be followed, they are rarely enough to guarantee mission success as not all components in the system may be trusted and the properties of the environment (e.g., the RF environment) may be under the control of the attacker. CPS must thus be built with a high degree of resilience to mitigate threats that security cannot alleviate. In this paper, we describe the Agile and Resilient Embedded Systems (ARES) methodology and metric set. The ARES methodology pursues cyber security and resilience (CSR) as high level system properties to be developed in the context of the mission. An analytic process guides system developers in defining mission objectives, examining principal issues, applying CSR technologies, and understanding their interactions.
READ LESS

Summary

Cyber-Physical Systems (CPS) such as Unmanned Aerial Systems (UAS) sense and actuate their environment in pursuit of a mission. The attack surface of these remotely located, sensing and communicating devices is both large, and exposed to adversarial actors, making mission assurance a challenging problem. While best-practice security policies should be...

READ MORE

Towards a universal CDAR device: a high performance adapter-based inline media encryptor

Summary

As the rate at which digital data is generated continues to grow, so does the need to ensure that data can be stored securely. The use of an NSA-certified Inline Media Encryptor (IME) is often required to protect classified data, as its security properties can be fully analyzed and certified with minimal coupling to the environment in which it is embedded. However, these devices are historically purpose-built and must often be redesigned and recertified for each target system. This tedious and costly (but necessary) process limits the ability for an information system architect to leverage advances made in storage technology. Our universal Classified Data At Rest (CDAR) architecture represents a modular approach to reduce this burden and maximize interface flexibility. The core module is designed around NVMe, a high-performance storage interface built directly on PCIe. Interfacing with non-NVMe interfaces such as SATA is achieved with adapters which are outside the certification boundary and therefore can be less costly and leverage rapidly evolving commercial technology. This work includes an analysis for both the functionality and security of this architecture. A prototype was developed with peak throughput of 23.9 Gb/s at a power consumption of 8.5W, making it suitable for a wide range of storage applications.
READ LESS

Summary

As the rate at which digital data is generated continues to grow, so does the need to ensure that data can be stored securely. The use of an NSA-certified Inline Media Encryptor (IME) is often required to protect classified data, as its security properties can be fully analyzed and certified...

READ MORE

Dynamically correlating network terrain to organizational missions

Published in:
Proc. NATO IST-153/RWS-21 Workshop on Cyber Resilience, 23-25 October 2017.

Summary

A precondition for assessing mission resilience in a cyber context is identifying which cyber assets support the mission. However, determining the asset dependencies of a mission is typically a manual process that is time consuming, labor intensive and error-prone. Automating the process of mapping between network assets and organizational missions is highly desirable but technically challenging because it is difficult to find an appropriate proxy within available cyber data for an asset's mission utilization. In this paper we discuss strategies to automate the processes of both breaking an organization into its constituent mission areas, and mapping those mission areas onto network assets, using a data-driven approach. We have implemented these strategies to mine network data at MIT Lincoln Laboratory, and provide examples. We also discuss examples of how such mission mapping tools can help an analyst to identify patterns and develop contextual insight that would otherwise have been obscure.
READ LESS

Summary

A precondition for assessing mission resilience in a cyber context is identifying which cyber assets support the mission. However, determining the asset dependencies of a mission is typically a manual process that is time consuming, labor intensive and error-prone. Automating the process of mapping between network assets and organizational missions...

READ MORE

Bringing physical construction and real-world data collection into a massively open online course (MOOC)

Summary

This Work-In-Progress paper details the process and lessons learned when converting a hands-on engineering minicourse to a scalable, self-paced Massively Open Online Course (MOOC). Online courseware has been part of academic and industry training and learning for decades. Learning activities in online courses strive to mimic in-person delivery by including lectures, homework assignments, software exercises and exams. While these instructional activities provide "theory and practice" for many disciplines, engineering courses often require hands-on activities with physical tools, devices and equipment. To accommodate the need for this type of learning, MIT Lincoln Laboratory's "Build A Small Radar" (BSR) course was used to explore teaching and learning strategies that support the inclusion of physical construction and real world data collection in a MOOC. These tasks are encountered across a range of engineering disciplines and the methods illustrated here are easily generalized to the learning experiences in engineering and science disciplines.
READ LESS

Summary

This Work-In-Progress paper details the process and lessons learned when converting a hands-on engineering minicourse to a scalable, self-paced Massively Open Online Course (MOOC). Online courseware has been part of academic and industry training and learning for decades. Learning activities in online courses strive to mimic in-person delivery by including...

READ MORE

Streaming graph challenge: stochastic block partition

Summary

An important objective for analyzing real-world graphs is to achieve scalable performance on large, streaming graphs. A challenging and relevant example is the graph partition problem. As a combinatorial problem, graph partition is NP-hard, but existing relaxation methods provide reasonable approximate solutions that can be scaled for large graphs. Competitive benchmarks and challenges have proven to be an effective means to advance state-of-the-art performance and foster community collaboration. This paper describes a graph partition challenge with a baseline partition algorithm of sub-quadratic complexity. The algorithm employs rigorous Bayesian inferential methods based on a statistical model that captures characteristics of the real-world graphs. This strong foundation enables the algorithm to address limitations of well-known graph partition approaches such as modularity maximization. This paper describes various aspects of the challenge including: (1) the data sets and streaming graph generator, (2) the baseline partition algorithm with pseudocode, (3) an argument for the correctness of parallelizing the Bayesian inference, (4) different parallel computation strategies such as node-based parallelism and matrix-based parallelism, (5) evaluation metrics for partition correctness and computational requirements, (6) preliminary timing of a Python-based demonstration code and the open source C++ code, and (7) considerations for partitioning the graph in streaming fashion. Data sets and source code for the algorithm as well as metrics, with detailed documentation are available at GraphChallenge.org.
READ LESS

Summary

An important objective for analyzing real-world graphs is to achieve scalable performance on large, streaming graphs. A challenging and relevant example is the graph partition problem. As a combinatorial problem, graph partition is NP-hard, but existing relaxation methods provide reasonable approximate solutions that can be scaled for large graphs. Competitive...

READ MORE

A cloud-based brain connectivity analysis tool

Summary

With advances in high throughput brain imaging at the cellular and sub-cellular level, there is growing demand for platforms that can support high performance, large-scale brain data processing and analysis. In this paper, we present a novel pipeline that combines Accumulo, D4M, geohashing, and parallel programming to manage large-scale neuron connectivity graphs in a cloud environment. Our brain connectivity graph is represented using vertices (fiber start/end nodes), edges (fiber tracks), and the 3D coordinates of the fiber tracks. For optimal performance, we take the hybrid approach of storing vertices and edges in Accumulo and saving the fiber track 3D coordinates in flat files. Accumulo database operations offer low latency on sparse queries while flat files offer high throughput for storing, querying, and analyzing bulk data. We evaluated our pipeline by using 250 gigabytes of mouse neuron connectivity data. Benchmarking experiments on retrieving vertices and edges from Accumulo demonstrate that we can achieve 1-2 orders of magnitude speedup in retrieval time when compared to the same operation from traditional flat files. The implementation of graph analytics such as Breadth First Search using Accumulo and D4M offers consistent good performance regardless of data size and density, thus is scalable to very large dataset. Indexing of neuron subvolumes is simple and logical with geohashing-based binary tree encoding. This hybrid data management backend is used to drive an interactive web-based 3D graphical user interface, where users can examine the 3D connectivity map in a Google Map-like viewer. Our pipeline is scalable and extensible to other data modalities.
READ LESS

Summary

With advances in high throughput brain imaging at the cellular and sub-cellular level, there is growing demand for platforms that can support high performance, large-scale brain data processing and analysis. In this paper, we present a novel pipeline that combines Accumulo, D4M, geohashing, and parallel programming to manage large-scale neuron...

READ MORE

A linear algebra approach to fast DNA mixture analysis using GPUs

Summary

Analysis of DNA samples is an important step in forensics, and the speed of analysis can impact investigations. Comparison of DNA sequences is based on the analysis of short tandem repeats (STRs), which are short DNA sequences of 2-5 base pairs. Current forensics approaches use 20 STR loci for analysis. The use of single nucleotide polymorphisms (SNPs) has utility for analysis of complex DNA mixtures. The use of tens of thousands of SNPs loci for analysis poses significant computational challenges because the forensic analysis scales by the product of the loci count and number of DNA samples to be analyzed. In this paper, we discuss the implementation of a DNA sequence comparison algorithm by re-casting the algorithm in terms of linear algebra primitives. By developing an overloaded matrix multiplication approach to DNA comparisons, we can leverage advances in GPU hardware and algorithms for Dense Generalized Matrix-Multiply (DGEMM) to speed up DNA sample comparisons. We show that it is possible to compare 2048 unknown DNA samples with 20 million known samples in under 6 seconds using a NVIDIA K80 GPU.
READ LESS

Summary

Analysis of DNA samples is an important step in forensics, and the speed of analysis can impact investigations. Comparison of DNA sequences is based on the analysis of short tandem repeats (STRs), which are short DNA sequences of 2-5 base pairs. Current forensics approaches use 20 STR loci for analysis...

READ MORE

Benchmarking data analysis and machine learning applications on the Intel KNL many-core processor

Summary

Knights Landing (KNL) is the code name for the second-generation Intel Xeon Phi product family. KNL has generated significant interest in the data analysis and machine learning communities because its new many-core architecture targets both of these workloads. The KNL many-core vector processor design enables it to exploit much higher levels of parallelism. At the Lincoln Laboratory Supercomputing Center (LLSC), the majority of users are running data analysis applications such as MATLAB and Octave. More recently, machine learning applications, such as the UC Berkeley Caffe deep learning framework, have become increasingly important to LLSC users. Thus, the performance of these applications on KNL systems is of high interest to LLSC users and the broader data analysis and machine learning communities. Our data analysis benchmarks of these application on the Intel KNL processor indicate that single-core double-precision generalized matrix multiply (DGEMM) performance on KNL systems has improved by ~3.5x compared to prior Intel Xeon technologies. Our data analysis applications also achieved ~60% of the theoretical peak performance. Also a performance comparison of a machine learning application, Caffe, between the two different Intel CPUs, Xeon E5 v3 and Xeon Phi 7210, demonstrated a 2.7x improvement on a KNL node.
READ LESS

Summary

Knights Landing (KNL) is the code name for the second-generation Intel Xeon Phi product family. KNL has generated significant interest in the data analysis and machine learning communities because its new many-core architecture targets both of these workloads. The KNL many-core vector processor design enables it to exploit much higher...

READ MORE

Static graph challenge: subgraph isomorphism

Summary

The rise of graph analytic systems has created a need for ways to measure and compare the capabilities of these systems. Graph analytics present unique scalability difficulties. The machine learning, high performance computing, and visual analytics communities have wrestled with these difficulties for decades and developed methodologies for creating challenges to move these communities forward. The proposed Subgraph Isomorphism Graph Challenge draws upon prior challenges from machine learning, high performance computing, and visual analytics to create a graph challenge that is reflective of many real-world graph analytics processing systems. The Subgraph Isomorphism Graph Challenge is a holistic specification with multiple integrated kernels that can be run together or independently. Each kernel is well defined mathematically and can be implemented in any programming environment. Subgraph isomorphism is amenable to both vertex-centric implementations and array-based implementations (e.g., using the Graph-BLAS.org standard). The computations are simple enough that performance predictions can be made based on simple computing hardware models. The surrounding kernels provide the context for each kernel that allows rigorous definition of both the input and the output for each kernel. Furthermore, since the proposed graph challenge is scalable in both problem size and hardware, it can be used to measure and quantitatively compare a wide range of present day and future systems. Serial implementations in C++, Python, Python with Pandas, Matlab, Octave, and Julia have been implemented and their single threaded performance have been measured. Specifications, data, and software are publicly available at GraphChallenge.org.
READ LESS

Summary

The rise of graph analytic systems has created a need for ways to measure and compare the capabilities of these systems. Graph analytics present unique scalability difficulties. The machine learning, high performance computing, and visual analytics communities have wrestled with these difficulties for decades and developed methodologies for creating challenges...

READ MORE

Performance measurements of supercomputing and cloud storage solutions

Summary

Increasing amounts of data from varied sources, particularly in the fields of machine learning and graph analytics, are causing storage requirements to grow rapidly. A variety of technologies exist for storing and sharing these data, ranging from parallel file systems used by supercomputers to distributed block storage systems found in clouds. Relatively few comparative measurements exist to inform decisions about which storage systems are best suited for particular tasks. This work provides these measurements for two of the most popular storage technologies: Lustre and Amazon S3. Lustre is an opensource, high performance, parallel file system used by many of the largest supercomputers in the world. Amazon's Simple Storage Service, or S3, is part of the Amazon Web Services offering, and offers a scalable, distributed option to store and retrieve data from anywhere on the Internet. Parallel processing is essential for achieving high performance on modern storage systems. The performance tests used span the gamut of parallel I/O scenarios, ranging from single-client, single-node Amazon S3 and Lustre performance to a large-scale, multi-client test designed to demonstrate the capabilities of a modern storage appliance under heavy load. These results show that, when parallel I/O is used correctly (i.e., many simultaneous read or write processes), full network bandwidth performance is achievable and ranged from 10 gigabits/s over a 10 GigE S3 connection to 0.35 terabits/s using Lustre on a 1200 port 10 GigE switch. These results demonstrate that S3 is well-suited to sharing vast quantities of data over the Internet, while Lustre is well-suited to processing large quantities of data locally.
READ LESS

Summary

Increasing amounts of data from varied sources, particularly in the fields of machine learning and graph analytics, are causing storage requirements to grow rapidly. A variety of technologies exist for storing and sharing these data, ranging from parallel file systems used by supercomputers to distributed block storage systems found in...

READ MORE