Publications
Streaming graph challenge: stochastic block partition
Summary
Summary
An important objective for analyzing real-world graphs is to achieve scalable performance on large, streaming graphs. A challenging and relevant example is the graph partition problem. As a combinatorial problem, graph partition is NP-hard, but existing relaxation methods provide reasonable approximate solutions that can be scaled for large graphs. Competitive...
SoK: cryptographically protected database search
Summary
Summary
Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly, systems are offered by academia, start-ups...
Detecting virus exposure during the pre-symptomatic incubation period using physiological data
Summary
Summary
Early pathogen exposure detection allows better patient care and faster implementation of public health measures (patient isolation, contact tracing). Existing exposure detection most frequently relies on overt clinical symptoms, namely fever, during the infectious prodromal period. We have developed a robust machine learning method to better detect asymptomatic states during...
SIAM data mining "brings it" to annual meeting
Summary
Summary
The Data Mining Activity Group is one of SIAM's most vibrant and dynamic activity groups. To better share our enthusiasm for data mining with the broader SIAM community, our activity group organized six minisymposia at the 2016 Annual Meeting. These minisymposia included 48 talks organized by 11 SIAM members.
Learning by doing, High Performance Computing education in the MOOC era
Summary
Summary
The High Performance Computing (HPC) community has spent decades developing tools that teach practitioners to harness the power of parallel and distributed computing. To create scalable and flexible educational experiences for practitioners in all phases of a career, we turn to Massively Open Online Courses (MOOCs). We detail the design...
Side channel authenticity discriminant analysis for device class identification
Summary
Summary
Counterfeit microelectronics present a significant challenge to commercial and defense supply chains. Many modern anti-counterfeit strategies rely on manufacturer cooperation to include additional identification components. We instead propose Side Channel Authenticity Discriminant Analysis (SICADA) to leverage physical phenomena manifesting from device operation to match suspect parts to a class of...
Enhancing HPC security with a user-based firewall
Summary
Summary
High Performance Computing (HPC) systems traditionally allow their users unrestricted use of their internal network. While this network is normally controlled enough to guarantee privacy without the need for encryption, it does not provide a method to authenticate peer connections. Protocols built upon this internal network, such as those used...
Julia implementation of the Dynamic Distributed Dimensional Data Model
Summary
Summary
Julia is a new language for writing data analysis programs that are easy to implement and run at high performance. Similarly, the Dynamic Distributed Dimensional Data Model (D4M) aims to clarify data analysis operations while retaining strong performance. D4M accomplishes these goals through a composable, unified data model on associative...
Benchmarking the Graphulo processing framework
Summary
Summary
Graph algorithms have wide applicability to a variety of domains and are often used on massive datasets. Recent standardization efforts such as the GraphBLAS are designed to specify a set of key computational kernels that hardware and software developers can adhere to. Graphulo is a processing framework that enables GraphBLAS...
High-throughput ingest of data provenance records in Accumulo
Summary
Summary
Whole-system data provenance provides deep insight into the processing of data on a system, including detecting data integrity attacks. The downside to systems that collect whole-system data provenance is the sheer volume of data that is generated under many heavy workloads. In order to make provenance metadata useful, it must...