Publications

Refine Results

(Filters Applied) Clear All

High-power, low-noise 1.5-um slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications

Summary

We review the development of a new class of high-power, edge-emitting, semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. We restrict the scope to InP-based devices incorporating either InGaAsP or InGaAlAs quantum-well active regions and operating in the 1.5-μm-wavelength region. Key properties of the SCOW gain medium include large transverse optical mode dimensions (>;5 × 5 μm), ultralow optical confinement factor (Γ ~ 0.25-1%), and small internal loss coefficient (α i ~ 0.5 cm-1). These properties have enabled the realization of 1) packaged Watt-class semiconductor optical amplifiers (SOAs) having low-noise figure (4-5 dB), 2) monolithic passively mode-locked lasers generating 0.25-W average output power, 3) external-cavity fiber-ring actively mode-locked lasers exhibiting residual timing jitter of
READ LESS

Summary

We review the development of a new class of high-power, edge-emitting, semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. We restrict the scope to InP-based devices incorporating either InGaAsP or InGaAlAs quantum-well active regions and operating in the 1.5-μm-wavelength region. Key properties of the SCOW gain...

READ MORE

MCE training techniques for topic identification of spoken audio documents

Published in:
IEEE Trans. Audio, Speech, Language Proc., Vol. 19, No. 8, November 2011, pp. 2451-2461.

Summary

In this paper, we discuss the use of minimum classification error (MCE) training as a means for improving traditional approaches to topic identification such as naive Bayes classifiers and support vector machines. A key element of our new MCE training techniques is their ability to efficiently apply jackknifing or leave-one-out training to yield improved models which generalize better to unseen data. Experiments were conducted using recorded human-human telephone conversations from the Fisher Corpus using feature vector representations from word-based automatic speech recognition lattices. Sizeable improvements in topic identification accuracy using the new MCE training techniques were observed.
READ LESS

Summary

In this paper, we discuss the use of minimum classification error (MCE) training as a means for improving traditional approaches to topic identification such as naive Bayes classifiers and support vector machines. A key element of our new MCE training techniques is their ability to efficiently apply jackknifing or leave-one-out...

READ MORE

Decomposition methods for optimized collision avoidance with multiple threats

Published in:
DASC 2011, 30th IEEE/AIAA Digital Avionics Systems Conference, 16-20 October 2011, pp. 1D2.

Summary

Aircraft collision avoidance systems assist in the resolution of collision threats from nearby aircraft by issuing avoidance maneuvers to pilots. Encounters where multiple aircraft pose a threat, though rare, can be difficult to resolve because a maneuver that might resolve a conflict with one aircraft might induce conflicts with others. Recent efforts to develop robust collision avoidance systems for single-threat encounters have involved modeling the problem as a Markov decision process and applying dynamic programming to solve for the optimal avoidance strategy. Because this methodology does not scale well to multiple threats, this paper evaluates a variety of decomposition methods that leverage the optimal avoidance strategy for single-threat encounters.
READ LESS

Summary

Aircraft collision avoidance systems assist in the resolution of collision threats from nearby aircraft by issuing avoidance maneuvers to pilots. Encounters where multiple aircraft pose a threat, though rare, can be difficult to resolve because a maneuver that might resolve a conflict with one aircraft might induce conflicts with others...

READ MORE

Collision avoidance for general aviation

Published in:
30th AIAA/IEEE Digital Avionics Systems Conf., 16-20 October 2011.

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is mandated on all large transport aircraft to reduce mid-air collision risk. Since its introduction, no mid-air collisions between TCAS-equipped aircraft have occurred in the United States. However, General Aviation (GA) aircraft are generally not equipped with TCAS and experience collisions several times per year. There is interest in low-cost collision avoidance systems for GA aircraft to reduce collision risk with other GA aircraft as well as with TCAS-equipped aircraft. Since TCAS was designed for large aircraft that can achieve greater vertical rates, the assumptions made by the system and the associated advisories are not always appropriate for GA aircraft. Modifying the TCAS logic to accommodate GA aircraft is far from straightforward. Even minor changes to TCAS to correct operational issues are difficult to implement due to the interaction of the complex rules defining the logic. Recent work has explored an alternative to the TCAS logic based on optimization with respect to a probabilistic model of aircraft behavior. The model encodes performance constraints of GA aircraft, and a computational technique called dynamic programming allows the optimal collision avoidance strategy to be computed efficiently. Prior work has focused on systems that meet the performance assumptions of the existing TCAS logic. However, these assumptions are not always appropriate for GA aircraft. This paper will present simulation results comparing the existing logic to logic that has been optimized to operate onboard GA aircraft. If both aircraft are equipped with collision avoidance logic, it is important that the advisories be coordinated to prevent both aircraft from climbing or descending. The TCAS logic has a built-in coordination mechanism with which a GA system must maintain compatibility. Several coordination strategies, both with the optimized logic and the current logic, are evaluated in simulation.
READ LESS

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is mandated on all large transport aircraft to reduce mid-air collision risk. Since its introduction, no mid-air collisions between TCAS-equipped aircraft have occurred in the United States. However, General Aviation (GA) aircraft are generally not equipped with TCAS and experience collisions several...

READ MORE

Estimating the likelihood of success in departure management strategies during convective weather

Published in:
Proc. 30th IEEE/AIAA Digital Avionics Systems Conference, DASC, 16-20 October 2011, pp. 6D4.

Summary

The presence of convective weather (thunderstorms) in terminal and nearby en route airspace of major metroplex areas can have significant impacts on departure operations. Traffic on departure routes impacted by convective weather may be constrained by miles-in-trail (MIT) restrictions, to allow controllers the time needed to maneuver individual flights around thunderstorms that pilots wish to avoid. When the workload required to manage traffic flows becomes too great, departure routes may be closed. Departures still on the ground that are filed on closed or restricted routes may face significant delays as they wait for clearance on their filed route, or for a viable reroute to be implemented. The solution proposed in concepts such as the Integrated Departure Route Planning tool (IDRP) [1] is the use of weather and departure demand forecasts to plan and implement reroutes to avoid weather and volume congestion proactively, well in advance of route restrictions or closures.
READ LESS

Summary

The presence of convective weather (thunderstorms) in terminal and nearby en route airspace of major metroplex areas can have significant impacts on departure operations. Traffic on departure routes impacted by convective weather may be constrained by miles-in-trail (MIT) restrictions, to allow controllers the time needed to maneuver individual flights around...

READ MORE

Initial validation of a convective weather avoidance model (CWAM) in departure airspace

Published in:
DASC 2011, 30th IEEE/AIAA Digital Avionics Systems Conference, 16-20 October 2011, pp. 3A2.

Summary

The Convective Weather Avoidance Model (CWAM) translates gridded, deterministic weather observations and forecasts into Weather Avoidance Fields (WAF). The WAF gives the probability, at each point in the grid, that a pilot will choose to deviate around convective weather at that location. CWAM have been developed and validated for en route, high altitude, level flight, low altitude level flight, and for descending arrivals. A heuristic CWAM for departures was also developed and deployed as part of the Route Availability Planning Tool (RAPT) prototype development in New York and Chicago. This paper presents an evaluation of the departure CWAM that is currently deployed as part of RAPT, based on an analysis of departure traffic in the Chicago terminal area during convective weather events.
READ LESS

Summary

The Convective Weather Avoidance Model (CWAM) translates gridded, deterministic weather observations and forecasts into Weather Avoidance Fields (WAF). The WAF gives the probability, at each point in the grid, that a pilot will choose to deviate around convective weather at that location. CWAM have been developed and validated for en...

READ MORE

Position validation strategies using partially observable Markov decision processes

Published in:
Proc. 30th IEEE/AIAA Digital Avionics Systems Conference, DASC, 16-20 October 2011, pp. 4A2.

Summary

The collision avoidance system that is currently deployed worldwide relies upon radar beacon surveillance. With its broad deployment over the next decade, aviation surveillance based on Automatic Dependent Surveillance-Broadcast (ADS-B) reports may reduce the need for frequent beacon interrogation over the communication channel, but there is a risk of ADS-B providing erroneous data to the collision avoidance system, resulting in a potential collision. Hence, there is a need to use beacon interrogation to periodically validate ADS-B position reports. Various threshold-based validation strategies based on proximity and closure rate have been suggested to reduce channel congestion while maintaining the reliability of the collision avoidance system. This paper shows how to model the problem of deciding when to validate ADS-B reports as a partially observable Markov decision process, and it explains how to solve for the optimal validation strategy. The effectiveness of this approach is demonstrated in simulation.
READ LESS

Summary

The collision avoidance system that is currently deployed worldwide relies upon radar beacon surveillance. With its broad deployment over the next decade, aviation surveillance based on Automatic Dependent Surveillance-Broadcast (ADS-B) reports may reduce the need for frequent beacon interrogation over the communication channel, but there is a risk of ADS-B...

READ MORE

The Tower Flight Data Manager prototype system

Published in:
DASC 2011, 30th IEEE/AIAA Digital Avionics Systems Conference, 16-20 October 2011, pp. 2C5.

Summary

The Tower Flight Data Manager (TFDM) will serve as the next generation air traffic control tower automation platform for surface and local airspace operations. TFDM provides three primary enhancements over current systems: consolidation of diverse data and information sources into a single platform; electronic data exchange, including flight data entries, within and outside the tower cab; and a suite of decision support capabilities leveraging TFDM's access to external data sources and systems. This paper describes a TFDM prototype system that includes integrated surveillance, flight data, and decision support display components. Enhancements in airport configuration management, runway assignment, taxi routing, sequencing and scheduling, and departure route assurance are expected to yield significant benefits in delay reduction, fuel savings, additional capacity, improved access, enhanced safety, and reduced environmental impact. Data are provided on system performance and air traffic controller acceptance from simulation studies and a preliminary field demonstration at Dallas / Ft. Worth International Airport.
READ LESS

Summary

The Tower Flight Data Manager (TFDM) will serve as the next generation air traffic control tower automation platform for surface and local airspace operations. TFDM provides three primary enhancements over current systems: consolidation of diverse data and information sources into a single platform; electronic data exchange, including flight data entries...

READ MORE

Compact external-cavity semiconductor mode-locked laser with quantum-well-intermixed modulator and saturable absorber

Published in:
IPC11, IEEE Photonics Conf., 9-13 October 2011, pp. 753-754.

Summary

We demonstrate a slab-coupled optical waveguide external-cavity mode-locked laser having unique bandedges for the amplifier, modulator and saturable absorber elements. An average output power of 50mW and timing jitter of 254fs is achieved at 1.5-GHz.
READ LESS

Summary

We demonstrate a slab-coupled optical waveguide external-cavity mode-locked laser having unique bandedges for the amplifier, modulator and saturable absorber elements. An average output power of 50mW and timing jitter of 254fs is achieved at 1.5-GHz.

READ MORE

Analysis of open-loop and closed-loop planning for aircraft collision avoidance

Published in:
2011 14th Int. IEEE Conf. on Intelligent Transportation Systems, 5-7 October 2011, pp. 212-217.

Summary

Open-loop planning has been a popular approach for developing aircraft collision avoidance systems. Open-loop planning computes a future plan to follow without anticipation of how future observations can affect the future course of action. Closed-loop planning, in contrast, takes into account the ability to react to future information. This paper explores trade-offs that exist between the two strategies as they apply to aircraft collision avoidance. It demonstrates some of the performance gains that con be realized by adopting a closed-loop planning strategy.
READ LESS

Summary

Open-loop planning has been a popular approach for developing aircraft collision avoidance systems. Open-loop planning computes a future plan to follow without anticipation of how future observations can affect the future course of action. Closed-loop planning, in contrast, takes into account the ability to react to future information. This paper...

READ MORE