Publications

Refine Results

(Filters Applied) Clear All

Advocate: a distributed voice-oriented computing architecture

Published in:
North American Chapter of the Association for Computational Linguistics - Human Language Technologies Conf. (NAACL HLT 2009), 31 May - 5 June 2009.

Summary

Advocate is a lightweight and easy-to-use computing architecture that supports real-time, voice-oriented computing. It is designed to allow the combination of multiple speech and language processing components to create cohesive distributed applications. It is scalable, supporting local processing of all NLP/speech components when sufficient processing resources are available to one machine, or fully distributed/networked processing over an arbitrarily large compute structure when more compute resources are needed. Advocate is designed to operate in a large distributed test-bed in which an arbitrary number of NLP/speech services interface with an arbitrary number of Advocate clients applications. In this configuration, each Advocate client application employs automatic service discovery, calling them as required.
READ LESS

Summary

Advocate is a lightweight and easy-to-use computing architecture that supports real-time, voice-oriented computing. It is designed to allow the combination of multiple speech and language processing components to create cohesive distributed applications. It is scalable, supporting local processing of all NLP/speech components when sufficient processing resources are available to one...

READ MORE

Lithographically directed surface modification

Published in:
J. Vacuum Sci. Technol. B, Microelectron. Process. Phenon., Vol. 27, No. 6, p. 3031-3037.

Summary

The directed assembly of polystyrene-block-poly(methyl methacrylate) films on a variety of photolytically nanopatterned siloxane-modified surfaces was investigated. The amount of siloxane removal is related to the exposure dose of a 157 nm laser. The modified surfaces were imaged using a 157 nm interference exposure system to lithographically define areas of different surface energies to direct the assembly of the diblock copolymer films. The analysis of the surface energy aerial image provided insights into the exposure doses required to result in defect-free films. While the slope of the surface energy aerial image was not found to be important by itself, in concert with the difference in high and low surface energy regions, as well as the maximum value of the low surface energy region, it provided insight into conditions needed to direct self-assembly of the block copolymer films. Preliminary investigations concerning the extension of this methodology to 193 nm showed that the polar surface energy of arylsiloxane-modified surfaces can also be affected by 193 nm exposure.
READ LESS

Summary

The directed assembly of polystyrene-block-poly(methyl methacrylate) films on a variety of photolytically nanopatterned siloxane-modified surfaces was investigated. The amount of siloxane removal is related to the exposure dose of a 157 nm laser. The modified surfaces were imaged using a 157 nm interference exposure system to lithographically define areas of...

READ MORE

Wind-shear system cost benefit analysis update

Published in:
MIT Lincoln Laboratory Report ATC-341

Summary

A series of fatal commercial aviation accidents in the 1970s led to the development of systems and strategies to protect against wind shear. The Terminal Doppler Weather Radar (TDWR), Low Level Wind Shear Alert System (LLWAS), Weather Systems Processor (WSP) for Airport Surveillance Radars (ASR-9), pilot training and on-board wind shear detection equipment are all key protection components. While these systems have been highly effective, there are substantial costs associated with maintaining and operating ground-based systems. In addition, while over 85% of all major air carrier operations occur at airports protected by one of these ground-based wind-shear systems, the vast majority of smaller operations remain largely unprotected. This report assesses the technical and operational benefits of current and potential alternative ground-based systems as mitigations for the low-altitude wind-shear hazard. System performance and benefits for all of the current TDWR (46), ASR-9 WSP (35), and LLWAS (40) protected airports are examined, along with 40 currently unprotected airports. We considered in detail several alternatives and/or combinations for existing ground-based systems. These included the option to use data from current WSR-88D (or NEXRAD) and two potential future sensor deployments: (1) a commercially built pulsed-Doppler Lidar and (2) an X-band commercial Doppler weather radar. Wind-shear exposure estimates and simulation models for each wind shear protection component were developed for each site in order to accurately comare all alternatives. For the period 2010-2032, the current combination of wind-shear protection systems reduces teh $3.0 billion unprotected NAS overall wind-shear safety exposure to just $160 million over the entire study period. Overall, tehre were few alternatives that resulted in higher benefits than the TDWR, TDWR-LLWAS, and WSP configurations that currently exist at 81 airports. However, the cheaper operating costs of NEXRAD make it a potential alternative especially at LLWAS and non-wind-shear protected sites.
READ LESS

Summary

A series of fatal commercial aviation accidents in the 1970s led to the development of systems and strategies to protect against wind shear. The Terminal Doppler Weather Radar (TDWR), Low Level Wind Shear Alert System (LLWAS), Weather Systems Processor (WSP) for Airport Surveillance Radars (ASR-9), pilot training and on-board wind...

READ MORE

Safety analysis of upgrading to TCAS Version 7.1 using the 2008 U.S. Correlated Encounter Model

Published in:
MIT Lincoln Laboratory Report ATC-349

Summary

As a result of monitoring and modeling efforts by Eurocontrol and the FAA, two change proposals have been created to change the TCAS II V9.0 logic. The first, CP-112E, addresses the safety issues referred to as SA01. SA01 events have to do with the reversal logic contained in the TCAS algorithm, e.g., when TCAS reverses the sense of an RA from climb to descend. Typically, reversals occur to resolve deteriorating conditions during and encounter. V7.0 contained reversal logic based on certain assumptions and engineering judgment, but operational experience obtained since deployment has compelled a re-evaluation in areas of that logic, specifically having to do with late reversals. The second change proposal, CP-115, rectifies observed confusion surrounding the aural annunication AVSA during an RA by replacing it with the annunciation LOLO, and changing the TCAS V7.0 display and logic to appropriately support the change. Collectively, the changes to teh TCAS logic in both CP-112E and CP115 are referred to as TCAS II V7.1. Included in this document is a safety study that consideres V7.1 as a whole, and also the first safety study that uses teh U.S. correlated encounter model developed by Lincoln Laboratory for testing TCAS. Also included is a discussion of simulation capabilites developed at Lincoln Laboratory for evaluating CP-115 and for future analysis of TCAS in high density areas. Our study indicates that mroe risk lies in remaining with the current version of TCAS over upgrading to V7.1, and that no negative impact on safety in high density airspace occurs as a result of CP-115.
READ LESS

Summary

As a result of monitoring and modeling efforts by Eurocontrol and the FAA, two change proposals have been created to change the TCAS II V9.0 logic. The first, CP-112E, addresses the safety issues referred to as SA01. SA01 events have to do with the reversal logic contained in the TCAS...

READ MORE

Design and development of the TFDM information management architecture

Published in:
Integrated Communication, Navigation and Surveillance Conf., ICNS, 13-15 May 2009.

Summary

The Tower Flight Data Manager (TFDM) is a new terminal automation platform that will provide an integrated tower-user display suite including an extended electronic flight strip or "flight data management" (FDM) display. The integrated information exchange and processing environment established by TFDM will support a suite of automation-assisted user support tools collectively designated as the Arrival/Departure Management Tool or A/DMT. A/DMT will develop and manage an integrated plan for arrival, scheduled (and to the extent possible) non-scheduled departure operations at the airport, based on 4D-trajectory assignments. A primary concern of A/DMT is the efficient use of the runway complex to meet service demand from both arrivals and departures. In addition, A/DMT seeks to reduce fuel usage and engine emissions on the airport surface, to permit more efficient use of gates and holding areas, and to enhance the safety of surface operations. We first put forth a strategy for developing a scalable TFDM-A/DMT Information Management Architecture (TIMA) employing standard information exchange models, services and data formats. This architecture will be consistent with evolving System Wide Information Management (SWIM) technologies and data standards, and will support efficient insertion of processing algorithms (e.g. surface trajectory management algorithms) developed by the research community and/or industry. Next, we describe TIMA . While TIMA makes use of Service-Oriented Architecture (SOA) principles, it is primarily an information-oriented architecture; we discuss why this architectural style is necessary for TFDM, and how it is also beneficial for SWIM. We conclude with a description of a general model for managing temporal aspects of information within TFDM. TIMA needs to support not only real-time operations, but post-facto analysis as well. A major difficulty in conducting analyses involving different data sources is time synchronization of data. We describe a method for associating temporal information with data sources in a data-agnostic manner, so that data can be retrieved from a variety of sources in a uniform manner.
READ LESS

Summary

The Tower Flight Data Manager (TFDM) is a new terminal automation platform that will provide an integrated tower-user display suite including an extended electronic flight strip or "flight data management" (FDM) display. The integrated information exchange and processing environment established by TFDM will support a suite of automation-assisted user support...

READ MORE

Evaluation of TCAS II Version 7.1 using the FAA Fast-Time Encounter Generator model [volume 1]

Published in:
MIT Lincoln Laboratory Report ATC-346,I

Summary

This report documents the Lincoln Laboratory evaluation of the Traffic Alert and Collision Avoidance System II (TCAS II) logic version 7.1. TCAS II is an airborne collision avoidance system required since 30 December 1993 by the FAA on all air carrier aircraft with more than 30 passenger seats operating in the U.S. airspace. Version 7.1 was created to correct two potential safety problems in earlier versions. The first change focuses on the sense reversal logic. The second change focuses on avoiding "wrong way" responses to Vertical Speed Limit or "Adjust Vertical Speed, Adjust" RAs. Lincoln Laboratory evaluated the logic by examining more than eight million simulated pairwise encounters, derived from actual tracks recorded in U.S. airspace. The main goals of the evaluation were: (1) to study the performance of the revised sense reversal logic for encounters where one pilot ignores the TCAS advisory; (2) to determine if the revised sense reversal logic has an adverse impact on encounters where both pilots follow the TCAS advisories; (3) to determine if the change from "Adjust Vertical Speed, Adjust" advisories to "Level Off, Level Off" advisories provides a safety benefit for TCAS. Three sets of encounters were examined in order to fulfill these goals: encounters where both aircraft are TCAS-equipped and both pilots follow the advisories; encounters where both aircraft are TCAS-equipped and one pilot does not follow the advisory; and encounters where only one aircraft is TCAS-equipped. A detailed analysis followed by a summary is provided for each set of encounters. An overall summary is given at the end of the report.
READ LESS

Summary

This report documents the Lincoln Laboratory evaluation of the Traffic Alert and Collision Avoidance System II (TCAS II) logic version 7.1. TCAS II is an airborne collision avoidance system required since 30 December 1993 by the FAA on all air carrier aircraft with more than 30 passenger seats operating in...

READ MORE

Evaluation of TCAS II Version 7.1 using the FAA Fast-Time Encounter Generator model : appendix [volume 2]

Published in:
MIT Lincoln Laboratory Report ATC-346,II

Summary

Appendix to Project Report ATC-346, Evaluation of TCAS II Version 7.1 Using the Fast-Time Encounter Generator Model, Volume 1.
READ LESS

Summary

Appendix to Project Report ATC-346, Evaluation of TCAS II Version 7.1 Using the Fast-Time Encounter Generator Model, Volume 1.

READ MORE

Encounter models for unconventional aircraft version 1.0

Published in:
MIT Lincoln Laboratory Report ATC-348

Summary

Airspace encounter models, covering close encounter situations that may occur after standard separation assurance has been lost, are a critical component in the safety assessment of aviation procedures and collision avoidance systems. Of particular relevance to Unmanned Aircraft Systems (UAS) is the potential for encountering general aviation aircraft that are flying under Visual Flight Rules (VFR) and are not in contact with air traffic control. In response to the need to develop a model of these types of encounters, Lincoln Laboratory undertook an extensive data collection and modeling effort involving more than 96,000 unconventional aircraft tracks. The outcome of this effort was nine individual models encompassing ultralights, gliders, balloons, and airships. The models use Bayesian networks to represent relationships between dynamic variables and to construct random trajectories that are statistically similar to those observed in the data. The intruder trajectories can be used in fast-time Monte Carlo simulations to estimate collision risk. The model described in this report is one of three developed by Lincoln Laboratory. A correlated encounter model has been developed to represent situations in which it is likely that there would b e air traffic control intervention prior to a close enounter. The correlated model applies to encounters involving aircraft receiving Air Traffic Control (ATC) services and with transponders. TAn encounter with an intruder that does not have a transponder is uncorrelated in the sense that it is unlikely that there would be prior intervention by air traffic control. The uncorrelated model described in this report is based on global databases of pilot-submitted track data. This work is a follow-on to an uncorrelated conventional model developed from recorded radar tracks from aircraft using a 1200 transponder code. A byproduct of this encounter modeling effort was the extraction of feature distributions for unconventional aircraft. This provides an extensive collection of unconventional aircraft behavior in the airspace.
READ LESS

Summary

Airspace encounter models, covering close encounter situations that may occur after standard separation assurance has been lost, are a critical component in the safety assessment of aviation procedures and collision avoidance systems. Of particular relevance to Unmanned Aircraft Systems (UAS) is the potential for encountering general aviation aircraft that are...

READ MORE

Airspace encounter models for conventional and unconventional aircraft

Published in:
8th USA/Europe Air Traffic Management Research and Development Sem. (ATM 2009), 25 March 2009.

Summary

Collision avoidance systems play an important role in the future of aviation safety. Before new technologies on board manned or unmanned aircraft are deployed, rigorous analysis using encounter simulations is required to prove system robustness. These simulations rely on models that accurately reflect the geometries and dynamics of aircraft encounters at close range. These types of encounter models have been developed by several organizations since the early 1980s. Lincoln Laboratory's newer encounter models, however, provide a higher-fidelity representation of encounters, are based on substantially more data, leverage a theoretical framework for finding optimal model structures, and reflect recent changes in the airspace. Three categories of encounter model were developed by Lincoln Laboratory. Two of these categories are used for modeling conventional aircraft; one involving encounters with prior air traffic control intervention and one without. The third category of encounter model is for encounters with unconventional aircraft -- such as gliders, skydivers, balloons, and airships -- that typically do not carry transponders. Together, these encounter models are being used to examine the safety and effectiveness of aircraft collision avoidance systems and as a foundation for algorithms for future manned and unmanned systems.
READ LESS

Summary

Collision avoidance systems play an important role in the future of aviation safety. Before new technologies on board manned or unmanned aircraft are deployed, rigorous analysis using encounter simulations is required to prove system robustness. These simulations rely on models that accurately reflect the geometries and dynamics of aircraft encounters...

READ MORE

Dry cyclogenesis and dust mobilization in the intertropical discontinuity of the West African Monsoon: a case study

Published in:
J. Geophys. Res., Vol. 114, 14 March 2009, D05115.

Summary

Three-dimensional mesoscale numerical simulations were performed over Niger in order to investigate dry cyclogenesis in the West African intertropical discontinuity (ITD) during the summer, when it is located over the Sahel. The implications of dry cyclogenesis on dust emission and transport over West Africa are also addressed using the model results, together with spaceborne observations from the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The study focuses on the case of 7-8 July 2006, during the African Monsoon Multidisciplinary Analysis (AMMA) Special Observing Period 2a1. Model results show the formation of three dry cyclones in the ITD during a 24-h period. Simulations are used to investigate the formation and the development of one of these cyclones over Niger in the lee of the Hoggar-Air Mountains. They show the development of the vortex to be associated with (1) strong horizontal shear and low-level convergence existing along the monsoon shearline and (2) enhanced northeasterly winds associated with orographic blocking of air masses from the Mediterranean Sea. The dry cyclone was apparent between 0700 and 1300 UTC in the simulation, and it was approximately 400 km wide and 1500 m deep. Potential vorticity in the center of vortex reached nearly 6 PVU at the end of the cyclogenesis period (1000 UTC). The role of the orography on cyclogenesis along the ITD was evaluated through model simulations without orography. The comparison of the characteristics of the vortex in the simulations with and without orography suggests that the orography plays a secondary but still important role in the formation of the cyclone. Orography and related flow splitting tend to create low-level jets in the lee of the Hoggar and Air mountains which, in turn, create conditions favorable for the onset of a better defined and more intense vortex in the ITD region. Moreover, orography blocking appears to favor the occurrence of a longer-lived cyclone. Furthermore, model results suggested that strong surface winds (~11 m s−1) enhanced by the intensification of the vortex led to the emission of dust mass fluxes as large as 3 ug m−2 s−1. The mobilized dust was mixed upward to a height of 4–5 km to be made available for long-range transport. This study suggests that the occurrence of dry vortices in the ITD region may contribute significantly to the total dust activity over West Africa during summer. The distribution of dust over the Sahara-Sahel may be affected over areas and at time scales much larger than those associated with the cyclone itself.
READ LESS

Summary

Three-dimensional mesoscale numerical simulations were performed over Niger in order to investigate dry cyclogenesis in the West African intertropical discontinuity (ITD) during the summer, when it is located over the Sahel. The implications of dry cyclogenesis on dust emission and transport over West Africa are also addressed using the model...

READ MORE