Publications

Refine Results

(Filters Applied) Clear All

Corridor integrated weather system operation benefits 2002-2003 : initial estimates of convective weather delay reduction : executive summary

Published in:
MIT Lincoln Laboratory Report ATC-313-1

Summary

The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at major en route control centers in the Northeast and Great Lakes corridors and the Air Traffic Control Systems Command Center (ATCSCC) during six multi-day periods in 2003. (Not complete).
READ LESS

Summary

The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at...

READ MORE

High-level speaker verification with support vector machines

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Vol. 1, ICASSP, 17-21 May 2004, pp. I-73 - I-76.

Summary

Recently, high-level features such as word idiolect, pronunciation, phone usage, prosody, etc., have been successfully used in speaker verification. The benefit of these features was demonstrated in the NIST extended data task for speaker verification; with enough conversational data, a recognition system can become familiar with a speaker and achieve excellent accuracy. Typically, high-level-feature recognition systems produce a sequence of symbols from the acoustic signal and then perform recognition using the frequency and co-occurrence of symbols. We propose the use of support vector machines for performing the speaker verification task from these symbol frequencies. Support vector machines have been applied to text classification problems with much success. A potential difficulty in applying these methods is that standard text classification methods tend to smooth frequencies which could potentially degrade speaker verification. We derive a new kernel based upon standard log likelihood ratio scoring to address limitations of text classification methods. We show that our methods achieve significant gains over standard methods for processing high-level features.
READ LESS

Summary

Recently, high-level features such as word idiolect, pronunciation, phone usage, prosody, etc., have been successfully used in speaker verification. The benefit of these features was demonstrated in the NIST extended data task for speaker verification; with enough conversational data, a recognition system can become familiar with a speaker and achieve...

READ MORE

Multisensor MELPE using parameter substitution

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, Vol. 1, 17-21 May 2004, pp. I-477 - I-480.

Summary

The estimation of speech parameters and the intelligibility of speech transmitted through low-rate coders, such as MELP, are severely degraded when there are high levels of acoustic noise in the speaking environment. The application of nonacoustic and nontraditional sensors, which are less sensitive to acoustic noise than the standard microphone, is being investigated as a means to address this problem. Sensors being investigated include the General Electromagnetic Motion Sensor (GEMS) and the Physiological Microphone (P-mic). As an initial effort in this direction, a multisensor MELPe coder using parameter substitution has been developed, where pitch and voicing parameters are obtained from GEMS and PMic sensors, respectively, and the remaining parameters are obtained as usual from a standard acoustic microphone. This parameter substitution technique is shown to produce significant and promising DRT intelligibility improvements over the standard 2400 bps MELPe coder in several high-noise military environments. Further work is in progress aimed at utilizing the nontraditional sensors for additional intelligibility improvements and for more effective lower rate coding in noise.
READ LESS

Summary

The estimation of speech parameters and the intelligibility of speech transmitted through low-rate coders, such as MELP, are severely degraded when there are high levels of acoustic noise in the speaking environment. The application of nonacoustic and nontraditional sensors, which are less sensitive to acoustic noise than the standard microphone...

READ MORE

Modifications to ACAS safety study methods for remotely piloted vehicles (RPV)

Author:
Published in:
Int. Civil Aviation Organization Surveillance and Conflict Resolution Systems Panel Working Group, 3-7 May 2004.

Summary

Estimating the relative safety of a Remotely Piloted Vehicle (RPV) equipped with ACAS will require several extensions to the methods developed in previous ACAS studies. This paper outlines several of these redesign issues. First, it may be necessary to compute the probability that an RPV will experience a critical encounter relative to that for a conventional aircraft. Performing a safety study on only the incremental impact of equipping an RPV with ACAS would circumvent this need. Additionally, methods are proposed to adapt existing encounter models to better represent the likely characteristics of encounters with RPVs. Finally, modifications to the level of detail included in dynamic simulations and fault trees are discussed. It is proposed to shift all dynamic elements out of the fault tree and into a new more complex Monte Carlo simulation.
READ LESS

Summary

Estimating the relative safety of a Remotely Piloted Vehicle (RPV) equipped with ACAS will require several extensions to the methods developed in previous ACAS studies. This paper outlines several of these redesign issues. First, it may be necessary to compute the probability that an RPV will experience a critical encounter...

READ MORE

Adaptive doppler filtering applied to modern air traffic control radars

Published in:
Proc. of the IEEE 2004 Radar Conf., 26-29 April 2004, pp. 242-248.

Summary

This paper presents an analysis of the Doppler processing technology currently in use in the nation's terminal airport surveillance radars, and examines possibilities for performance improvement, particularly in the presence of moving clutter. The research focuses on five- and eight-pulse waveform methodologies and their respective detection capabilities given clearly defined rain clutter scenarios. Performance with fixed coefficient filters similar to those used in the existing radars is calculated, followed by performance using an adaptive Doppler filtering technique. Performance is quantified in terms of signal-to-interference ratio at the output of the Doppler filters and resultant probability of detection given a specified probability of false alarm. The results will show that a substantial improvement in detection in the vicinity of rain clutter is realized for both the five- and eight-pulse waveforms when using the adaptive coefficient Doppler filters as compared to the performance observed with the fixed coefficient filters. For constant filter weights, the eight-pulse Doppler filters give significantly better performance in most diverse rain clutter than the five-pulse Doppler filters.
READ LESS

Summary

This paper presents an analysis of the Doppler processing technology currently in use in the nation's terminal airport surveillance radars, and examines possibilities for performance improvement, particularly in the presence of moving clutter. The research focuses on five- and eight-pulse waveform methodologies and their respective detection capabilities given clearly defined...

READ MORE

Power-law scattering models and nonlinear parametric estimation for super-resolution radar

Published in:
MIT Lincoln Laboratory Report TR-1095

Summary

This paper introduces a direct solution of the frequency-dependent, GTD-based, scatterer-model parameters leading towards a new modern spectral-estimation technique to be used for enhanced, super-resolution radar analysis. The overcomplete nature of the full GTD scatterer-model basis (positive and negative half-integer power laws) is recognized and overcome by introducing the vector-channel method, well known from communication theory. This physically motivated discretemodel- based analysis eliminates the need for computationally intensive and potentially nonconvergent local optimization procedures. Each scatterer is assigned a half-integer power law that identifies its cross-section frequency dependence and hence restricts the possible underlying physical feature geometries. This analysis opens the possibility for vector-attribute-based feature processing for target recognition that offers the potential for significant improvement in target identification performance.
READ LESS

Summary

This paper introduces a direct solution of the frequency-dependent, GTD-based, scatterer-model parameters leading towards a new modern spectral-estimation technique to be used for enhanced, super-resolution radar analysis. The overcomplete nature of the full GTD scatterer-model basis (positive and negative half-integer power laws) is recognized and overcome by introducing the vector-channel...

READ MORE

A method for correcting Fourier transform spectrometer (FTS) dynamic alignment errors

Published in:
SPIE Vol. 5425, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, 12-15 April 2004, pp. 443-455.

Summary

The Cross-track Infrared Sounder (CrIS), like most Fourier Transform spectrometers, can be sensitive to mechanical disturbances during the time spectral data is collected. The Michelson interferometer within the spectrometer modulates input radiation at a frequency equal to the product of the wavenumber of the radiation and the constant optical path difference (OPD) velocity associated with the moving mirror. The modulation efficiency depends on the angular alignment of the two wavefronts exiting the spectrometer. Mechanical disturbances can cause errors in the alignment of the wavefronts which manifest as noise in the spectrum. To mitigate these affects CrIS will employ a laser to monitor alignment and dynamically correct the errors. Additionally, a vibration isolation system will damp disturbances imparted to the sensor from the spacecraft. Despite these efforts, residual noise may remain under certain conditions. Through simulation of CrIS data, we demonstrated an algorithmic technique to correct residual dynamic alignment errors. The technique requires only the time-dependent wavefront angle, sampled coincidentally with the interferogram, and the second derivative of the erroneous interferogram as inputs to compute the correction. The technique can function with raw interferograms on board the spacecraft, or with decimated interferograms on the ground. We were able to reduce the dynamic alignment noise by approximately a factor of ten in both cases. Performing the correction on the ground would require an increase in data rate of 1-2% over what is currently planned, in the form of 8-bit digitized angle data.
READ LESS

Summary

The Cross-track Infrared Sounder (CrIS), like most Fourier Transform spectrometers, can be sensitive to mechanical disturbances during the time spectral data is collected. The Michelson interferometer within the spectrometer modulates input radiation at a frequency equal to the product of the wavenumber of the radiation and the constant optical path...

READ MORE

Hyperspectral environmental suite for the Geostationary Operational Environmental Satellite (GOES)

Published in:
SPIE Vol. 5425, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, 12-15 April 2004, pp. 329-340.

Summary

The GOES satellites will fly a Hyperspectral Environmental Suite (HES) on GOES-R in the 2012 timeframe. The approximately 1500 spectral channels (technically ultraspectral), leading to improved vertical resolution, and approximately five times faster coverage rate planned for the sounder in this suite will greatly exceed the capabilities of the current GOES series instrument with its 18 spectral channels. In the GOES-R timeframe, frequent measurements afforded by geostationary orbits will be critical for numerical weather prediction models. Since the current GOES soundings are assimilated into numerical weather prediction models to improve the validity of model outputs, particularly in areas with little radiosonde coverage, this hyperspectral capability in the thermal infrared will significantly improve sounding performance for weather prediction in the western hemisphere, while providing and enhancing other products. Finer spatial resolution is planned for mesoscale observation of water vapor variations. The improvements over the previous GOES sounders and a primary difference from other planned instruments stem from two-dimensional focal plane array availability. These carry an additional set of challenges in terms of instrument specifications, which will be discussed. As a suite, HES is planned with new capabilities for coastal ocean coverage with the goal of including open ocean coverage. These new planned imaging applications, which will be either multispectral or hyperspectral, will also be discussed.
READ LESS

Summary

The GOES satellites will fly a Hyperspectral Environmental Suite (HES) on GOES-R in the 2012 timeframe. The approximately 1500 spectral channels (technically ultraspectral), leading to improved vertical resolution, and approximately five times faster coverage rate planned for the sounder in this suite will greatly exceed the capabilities of the current...

READ MORE

InGaAsP/InP quantum-well electrorefractive modulators with sub-volt V[pi]

Published in:
SPIE Vol. 5435, Enabling Photonic Technologies for Aerospace Applications VI, 12-16 April 2004, pp. 53-63.

Summary

Advanced analog-optical sensor, signal processing and communication systems could benefit significantly from wideband (DC to > 50 GHz) optical modulators having both low half-wave voltage (V[pi]) and low optical insertion loss. An important figure-of-merit for modulators used in analog applications is TMAX/V[pi], where TMAX is the optical transmission of the modulator when biased for maximum transmission. Candidate electro-optic materials for realizing these modulators include lithium niobate (LiNbO3), polymers, and semiconductors, each of which has its own set of advantages and disadvantages. In this paper, we report the development of 1.5-um-wavelength Mach-Zehnder modulators utilizing the electrorefractive effect in InGaAsP/InP symmetric, uncoupled semiconductor quantum-wells. Modulators with 1-cm-long, lumped-element electrodes are found to have a push-pull V[pi] of 0.9V (V[pi]L = 9 V-mm) and 18-dB fiber-to-fiber insertion loss (TMAX/V[pi] = 0.018). Fabry-Perot cutback measurements reveal a waveguide propagation loss of 7 dB/cm and a waveguide-to-fiber coupling loss of 5 dB/facet. The relatively high propagation loss results from a combination of below-bandedge absorption and scattering due to waveguide-sidewall roughness. Analyses show that most of the coupling loss can be eliminated though the use of monolithically integrated invertedtaper optical-mode converters, thereby allowing these modulators to exceed the performance of commercial LiNbO3 modulators (TMAX/V[pi] ~ 0.1). We also report the analog modulation characteristics of these modulators.
READ LESS

Summary

Advanced analog-optical sensor, signal processing and communication systems could benefit significantly from wideband (DC to > 50 GHz) optical modulators having both low half-wave voltage (V[pi]) and low optical insertion loss. An important figure-of-merit for modulators used in analog applications is TMAX/V[pi], where TMAX is the optical transmission of the...

READ MORE

Corridor Integrated Weather System operation benefits 2002-2003 : initial estimates of convective weather delay reduction

Published in:
MIT Lincoln Laboratory Report ATC-313

Summary

The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at major en route control centers in the Northeast and Great Lakes corridors and the Air Traffic Control Systems Command Center (ATCSCC) during six multi-day periods in 2003. This first phase of the benefit assessment characterizes major safety and delay reduction benefits and quantifies the delay reduction benefits for two key Traffic Flow Management (TFM) user benefits: "keeping air routes open longer/reopening closed routes soon" and "proactive, efficient reroutes of traffic around storm cells." The overall CIWS delay reduction for these two benefits is 40,000 to 69,000 hours annually with an equivalent monetary value ot $127M to $26M annually. Convective weather delays at most of the major airports in the test domain, normalized by thunderstorm frequency, decreased after new CIWS echo tops and forecast products were introduced. Recommendations are made for near-term, low-cost improvements to the CIWS demonstration system to further increase the operational benefits.
READ LESS

Summary

The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at...

READ MORE