Publications

Refine Results

(Filters Applied) Clear All

Detecting clusters of galaxies in the Sloan Digital Sky Survey. I. Monte Carlo comparison of cluster detection algorithms

Summary

We present a comparison of three cluster-finding algorithms from imaging data using Monte Carlo simulations of clusters embedded in a 25 deg(2) region of Sloan Digital Sky Survey (SDSS) imaging data: the matched filter (MF), the adaptive matched filter (AMF), and a color-magnitude filtered Voronoi tessellation technique (VTT). Among the two matched filters, we find that the MF is more efficient in detecting faint clusters, whereas the AMF evaluates the redshifts and richnesses more accurately, therefore suggesting a hybrid method (HMF) that combines the two. The HMF outperforms the VTT when using a background that is uniform, but it is more sensitive to the presence of a nonuniform galaxy background than is the VTT; this is due to the assumption of a uniform background in the HMF model. We thus find that for the detection thresholds we determine to be appropriate for the SDSS data, the performance of both algorithms are similar; we present the selection function for each method evaluated with these thresholds as a function of redshift and richness. For simulated clusters generated with a Schechter luminosity function (M(*r) = -21.5 and (a = -1.1), both algorithms are complete for Abell richness >~ clusters up to z ~0.4 for a sample magnitude limited to r = 21. While the cluster parameter evaluation shows a mild correlation with the local background density, the detection efficiency is not significantly affected by the background fluctuations, unlike previous shallower surveys.
READ LESS

Summary

We present a comparison of three cluster-finding algorithms from imaging data using Monte Carlo simulations of clusters embedded in a 25 deg(2) region of Sloan Digital Sky Survey (SDSS) imaging data: the matched filter (MF), the adaptive matched filter (AMF), and a color-magnitude filtered Voronoi tessellation technique (VTT). Among the...

READ MORE

Discrete optimization using decision-directed learning for distributed networked computing

Summary

Decision-directed learning (DDL) is an iterative discrete approach to finding a feasible solution for large-scale combinatorial optimization problems. DDL is capable of efficiently formulating a solution to network scheduling problems that involve load limiting device utilization, selecting parallel configurations for software applications and host hardware using a minimum set of resources, and meeting time-to-result performance requirements in a dynamic network environment. This paper quantifies the algorithms that constitute DDL and compares its performance to other popular combinatorial self-directed real-time networked resource configuration for dynamically building a mission specific signal-processor for real-time distributed and parallel applications.
READ LESS

Summary

Decision-directed learning (DDL) is an iterative discrete approach to finding a feasible solution for large-scale combinatorial optimization problems. DDL is capable of efficiently formulating a solution to network scheduling problems that involve load limiting device utilization, selecting parallel configurations for software applications and host hardware using a minimum set of...

READ MORE

The effect of personality type on the usage of a multimedia engineering education system

Author:
Published in:
32nd Annual ASEE/IEEE Frontiers in Education Conf., 6-9 November 2002, pp. T3A-7 - T3A-12.

Summary

Multimedia education has quickly entered our classrooms and offices providing tutorials and lessons on many different topics. The assumption that most people interact with these multimedia systems in similar ways can easily be made, but are these assumptions valid? What factors determine whether students will embrace computer-based multimedia-augmented learning? One factor may be the student's personality type. This paper explores the reasons why some students may enjoy learning using computer-based educational delivery systems while others may have absolutely no enthusiasm for this type of learning and how that enthusiasm may relate to the students' personality types.
READ LESS

Summary

Multimedia education has quickly entered our classrooms and offices providing tutorials and lessons on many different topics. The assumption that most people interact with these multimedia systems in similar ways can easily be made, but are these assumptions valid? What factors determine whether students will embrace computer-based multimedia-augmented learning? One...

READ MORE

PVL: An Object Oriented Software Library for Parallel Signal Processing (Abstract)

Published in:
CLUSTER '01, 2001 IEEE Int. Conf. on Cluster Computing, 8-11 October 2001, p. 74.

Summary

Real-time signal processing consumes the majority of the world's computing power Increasingly, programmable parallel microprocessors are used to address a wide variety of signal processing applications (e.g. scientific, video, wireless, medical, communication, encoding, radar, sonar and imaging). In programmable systems the major challenge is no longer hardware but software. Specifically, the key technical hurdle lies in mapping (i.e., placement and routing) of an algorithm onto a parallel computer in a general manner that preserves software portability. We have developed the Parallel Vector Library (PVL) to allow signal processing algorithms to be written using high level Matlab like constructs that are independent of the underlying parallel mapping. Programs written using PVL can be ported to a wide range of parallel computers without sacrificing performance. Furthermore, the mapping concepts in PVL provide the infrastructure for enabling new capabilities such as fault tolerance, dynamic scheduling and self-optimization. This presentation discusses PVL with particular emphasis on quantitative comparisons with standard parallel signal programming practices.
READ LESS

Summary

Real-time signal processing consumes the majority of the world's computing power Increasingly, programmable parallel microprocessors are used to address a wide variety of signal processing applications (e.g. scientific, video, wireless, medical, communication, encoding, radar, sonar and imaging). In programmable systems the major challenge is no longer hardware but software. Specifically...

READ MORE

Circuit-fed tile-approach configuration for millimeter-wave spatial power combining

Published in:
IEEE Trans. Microw. Theory Tech., Vol. 50, No. 1, Part 1, January 2002, pp. 17-21.

Summary

In this paper, a circuit-fed spatially combined transmitter array is described for operation at 44 GHz. The array contains 256 elements where each element consists of a monolithic-microwave integrated-circuit amplifier and a circularly polarized microchip patch antenna. The array is constructed using 16-element tile-approach subarrays. Each subarray is a two RF-level (three-dimensional) multichip module containing integrated microstrip patch antennas. The basic construction of the transmitter array resembles tile-approach phased arrays; however, the implementation has been tailored for the power-combining application. The peak performance at 43.5 GHz is equivalent isotropic radiated power of 40.6 dBW (11570 W), effective transmitted power (Peff) of 5.9 W, dc-to-RF efficiency of 7.3%, and system gain of 35 dB.
READ LESS

Summary

In this paper, a circuit-fed spatially combined transmitter array is described for operation at 44 GHz. The array contains 256 elements where each element consists of a monolithic-microwave integrated-circuit amplifier and a circularly polarized microchip patch antenna. The array is constructed using 16-element tile-approach subarrays. Each subarray is a two...

READ MORE

Analysis of delay causality at Newark International Airport

Published in:
4th USA/Europe Air Traffic Management R&D Seminar, 3-7 December 2001.

Summary

Determining causes of aviation delay is essential for formulating and evaluating approaches to reduce air traffic delays. An analysis was conducted of large weather-related delays at Newark International Airport (EWR), which, located in the heart of the congested northeast corridor of the United States, is an airport with a significant number of delays. Convective weather and reduced ceiling and visibility were found to be the leading contributors to large delays at EWR between September 1998 and August 2001. It was found that 41% of the cumulative arrival delay (delay relative to schedule) on days in this period averaging more than 15 minutes of delay per arrival occurred on days characterized by convective weather either within or at considerable distances from the New York terminal area. Of the remaining delays, 28% occurred on days characterized by low ceiling/visibility conditions, while 14% occurred on fair weather days with high surface winds, and 2% were caused by distant non-convective storms. Known causes other than weather accounted for 9% of the delays, and causes were unknown for 6%. When delay types (airborne, gate, taxi -out etc.) were categorized by the type of weather causing the delay, it was found that: (1) departure delays (gate + taxi-out) were much larger than arrival delays for thunderstorms in the NY terminal area and (2) taxi-out delays were the dominant type when delays were caused by distant convective weather. The fraction of total delay time explained by pre-planned Ground Delay Programs (GDP) rose sharply during 2000, accounting for over 40% of total the arrival delay that year, and then decreased slightly in 2001. On days with thunderstorms in the NY TRACON, arrival and departure delays were significantly higher during the year (2000) that GDPs were used most frequently.
READ LESS

Summary

Determining causes of aviation delay is essential for formulating and evaluating approaches to reduce air traffic delays. An analysis was conducted of large weather-related delays at Newark International Airport (EWR), which, located in the heart of the congested northeast corridor of the United States, is an airport with a significant...

READ MORE

Tactical convective weather decision support to complement "strategic" traffic flow management for convective weather

Author:
Published in:
46th Annual Air Traffic Control Association Conf. Proc., 4-8 November 2001, pp. 98-102.

Summary

Delay increases during the months of the year characterized by thunderstorms have been the principal cause of the dramatic delay growth in the US aviation system over the past 3 years, as shown in Figure 1. In 2000, the key new initiative for reducing these convective weather delays was "strategic" traffic flow management (TFM) through the Collaborative Convective Forecast Product (CCFP), the Strategic Planning Team, and Collaborative Routing (CR). This "strategic" approach has been quite successful in improving operations. However, in congested airspace, the inability to accurately forecast convective weather impacts requires a complementary tactical weather decision support capability. This paper describes terminal and enroute weather prediction systems plus traffic flow management and automation decision support tools to complement the strategic approach.
READ LESS

Summary

Delay increases during the months of the year characterized by thunderstorms have been the principal cause of the dramatic delay growth in the US aviation system over the past 3 years, as shown in Figure 1. In 2000, the key new initiative for reducing these convective weather delays was "strategic"...

READ MORE

Speaker recognition from coded speech and the effects of score normalization

Published in:
Proc. Thirty-Fifth Asilomar Conf. on Signals, Systems and Computers, Vol. 2, 4-7 November 2001, pp. 1562-1567.

Summary

We investigate the effect of speech coding on automatic speaker recognition when training and testing conditions are matched and mismatched. Experiments used standard speech coding algorithms (GSM, G.729, G.723, MELP) and a speaker recognition system based on Gaussian mixture models adapted from a universal background model. There is little loss in recognition performance for toll quality speech coders and slightly more loss when lower quality speech coders are used. Speaker recognition from coded speech using handset dependent score normalization and test score normalization are examined. Both types of score normalization significantly improve performance, and can eliminate the performance loss that occurs when there is a mismatch between training and testing conditions.
READ LESS

Summary

We investigate the effect of speech coding on automatic speaker recognition when training and testing conditions are matched and mismatched. Experiments used standard speech coding algorithms (GSM, G.729, G.723, MELP) and a speaker recognition system based on Gaussian mixture models adapted from a universal background model. There is little loss...

READ MORE

Optically sampled analog-to-digital converters

Published in:
IEEE Trans. Microw. Theory Tech., Vol. 49, No. 10, October 2001, pp. 1840-1853.
Topic:

Summary

Optically sampled analog-to-digital converters (ADCs) combine optical sampling with electronic quantization to enhance the performance of electronic ADCs. In this paper, we review the prior and current work in this field, and then describe our efforts to develop and extend the bandwidth of a linearized sampling technique referred to as phase-encoded optical sampling. The technique uses a dual-output electrooptic sampling transducer to achieve both high linearity and 60-dB suppression of laser amplitude noise. The bandwidth of the technique is extended by optically distributing the post-sampling pulses to an array of time-interleaved electronic quantizers. We report on the performance of a 505-MS/s (megasample per second) optically sampled ADC that includes high-extinction LiNbO(3) 1-to-8 optical time-division demultiplexers. Initial characterization of the 505-MS/s system reveals a maximum signal-to-noise ratio of 51 dB (8.2 bits) and a spur-free dynamic range of 61 dB. The performance of the present system is limited by electronic quantizer noise, photodiode saturation, and preliminary calibration procedures. None of these fundamentally limit this sampling approach, which should enable multigigahertz converters with 12-b resolution. A signal-to-noise analysis of the phase-encoded sampling technique shows good agreement with measured data from the 505-MS/s system.
READ LESS

Summary

Optically sampled analog-to-digital converters (ADCs) combine optical sampling with electronic quantization to enhance the performance of electronic ADCs. In this paper, we review the prior and current work in this field, and then describe our efforts to develop and extend the bandwidth of a linearized sampling technique referred to as...

READ MORE

ASR-8/TDX-2000 performance analysis: evaluation of multiple-time-around-detection (MTAD) algorithm and final report

Published in:
MIT Lincoln Laboratory Report ATC-300

Summary

This report documents the analysis of and subsequent improvements to the performance of the ASR-8/TDX-2000 digitizer equipment combination. Working at the FAA's Palm Springs, CA and Williams (Mesa, AZ) ASR-8 facilities, data was methodically collected and analyzed to isolate the causes of reported correlated radar-only tracks that were being dropped or were never initiated. These problems were subsequently fixed via hard and soft parameter changes in the TDX-2000. A significant study was also undertaken in conjunction with the Sensis Corporation to improve the TDX-2000's capability to reject returns from multiple-time-around detections. The details of that algorithm modification and the results of follow-on testing and analysis are described. Final conclusions on the status of the project are also included.
READ LESS

Summary

This report documents the analysis of and subsequent improvements to the performance of the ASR-8/TDX-2000 digitizer equipment combination. Working at the FAA's Palm Springs, CA and Williams (Mesa, AZ) ASR-8 facilities, data was methodically collected and analyzed to isolate the causes of reported correlated radar-only tracks that were being dropped...

READ MORE