Publications

Refine Results

(Filters Applied) Clear All

Due regard encounter model version 1.0

Published in:
MIT Lincoln Laboratory Report ATC-397

Summary

Airspace encounter models describe encounter situations that may occur between aircraft in the airspace and are a critical component of safety assessment of sense and avoid (SAA) systems for Unmanned Aircraft Systems (UASs). Some UAS will fly in international airspace under due regard and may encounter other aircraft during these operations. In these types of encounters, the intruder aircraft is likely receiving air traffic control (ATC) services, but the UAS is not. Thus, there is a need for a due regard encounter model that can be used to generate these types of encounters. This report describes the development of a due regard encounter model. In order to build the model, Lincoln Laboratory collected data for aircraft flying in international airspace using the Enhanced Traffic Management System (ETMS) data feed that was provided by the Volpe Center. Lincoln processed these data, and extracted important features to construct the model. The model is based on Bayesian networks that represent the probabilistic relationship between variables that describe how aircraft behave. The model is used to construct random aircraft trajectories that are statistically similar to those observed in the airspace. A large collection of encounters generated from an airspace encounter model can be used to evaluate the performance of a SAA system against encounter situations representative of those expected to actually occur in the airspace. Lincoln Laboratory has previously developed several other encounter models. There is an uncorrelated encounter model that is used to generate encounters with an intruder that does not have a transponder, or between two aircraft using a Mode A code of 1200 (VFR). There is also a correlated encounter model that is used when both aircraft have a transponder and at least one aircraft is in contact with ATC. Both of these models were built from radar data collected from the National Airspace System (NAS). There is also an unconventional encounter model that is used to generate encounters with unconventional intruders such as gliders, balloons, and airships--these vehicles have different flight characteristics than conventional aircraft. The framework used to construct the due regard encounter model described in this paper is similar to the prior models. The primary difference is that a different data feed is used and the model covers encounters in international flight where the aircraft of interest is flying due regard, which were not within the scope of prior models. Separate electronic files are available from Lincoln Laboratory that contain the statistical data required to generate encounter trajectories.
READ LESS

Summary

Airspace encounter models describe encounter situations that may occur between aircraft in the airspace and are a critical component of safety assessment of sense and avoid (SAA) systems for Unmanned Aircraft Systems (UASs). Some UAS will fly in international airspace under due regard and may encounter other aircraft during these...

READ MORE

A language-independent approach to automatic text difficulty assessment for second-language learners

Published in:
Proc. 2nd Workshop on Predicting and Improving Text Readability for Target Reader Populations, 4-9 August 2013.

Summary

In this paper we introduce a new baseline for language-independent text difficulty assessment applied to the Interagency Language Roundtable (ILR) proficiency scale. We demonstrate that reading level assessment is a discriminative problem that is best-suited for regression. Our baseline uses z-normalized shallow length features and TF-LOG weighted vectors on bag-of-words for Arabic, Dari, English, and Pashto. We compare Support Vector Machines and the Margin-Infused Relaxed Algorithm measured by mean squared error. We provide an analysis of which features are most predictive of a given level.
READ LESS

Summary

In this paper we introduce a new baseline for language-independent text difficulty assessment applied to the Interagency Language Roundtable (ILR) proficiency scale. We demonstrate that reading level assessment is a discriminative problem that is best-suited for regression. Our baseline uses z-normalized shallow length features and TF-LOG weighted vectors on bag-of-words...

READ MORE

Exploring the variable sky with LINEAR. II. Halo structure and substructure traces by RR Lyrae stars to 30 kpc

Summary

We present a sample of ~5000 RR Lyrae stars selected from the recalibrated LINEAR data set and detected at heliocentric distances between 5 kpc and 30 kpc over ~8000 deg^2 of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We analyze in detail the light curve properties and Galactic distribution of the subset of ~4000 type ab RR Lyrae (RRab) stars, including a search for new halo substructures and the number density distribution as a function of Oosterhoff type. We find evidence for the Oosterhoff dichotomy among field RR Lyrae stars, with the ratio of the type II and I subsamples of about 1:4, but with a weaker separation than for globular cluster stars. The wide sky coverage and depth of this sample allow unique constraints for the number density distribution of halo RRab stars as a function of galactocentric distance: it can be described as an oblate ellipsoid with an axis ratio q = 0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Consistent with previous studies, we find that the Oosterhoff type II subsample has a steeper number density profile than the Oosterhoff type I subsample. Using the group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters are suggestive of tidal streams possibly originating from globular clusters. Spectroscopic follow-up of detected halo groups is encouraged.
READ LESS

Summary

We present a sample of ~5000 RR Lyrae stars selected from the recalibrated LINEAR data set and detected at heliocentric distances between 5 kpc and 30 kpc over ~8000 deg^2 of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We analyze...

READ MORE

The directivity of a Yagi-Uda antenna from an effective propagation constant

Published in:
IEEE Int. Symp. Antennas and Propagation (APSURSI), 7-13 July 2013.

Summary

A technique is presented for determining the directivity of a long, uniform Yagi-Uda antenna. It is shown that the maximum directivity is limited by the propagation constant of the particular antenna structure. The propagation constant can be determined by means of a two-part antenna test fixture with M and M + 1 directors.
READ LESS

Summary

A technique is presented for determining the directivity of a long, uniform Yagi-Uda antenna. It is shown that the maximum directivity is limited by the propagation constant of the particular antenna structure. The propagation constant can be determined by means of a two-part antenna test fixture with M and M...

READ MORE

Stepped notch antenna array used as a low thermal resistance heat sink

Summary

A stepped notch antenna at Ku-band is developed to provide a thermal heat sink for active arrays. The antenna with forced air cooling provides up to 0.4 degrees C/W of thermal resistance. The antenna integration with a printed circuit board allows for high volume surface mount assembly of active devices.
READ LESS

Summary

A stepped notch antenna at Ku-band is developed to provide a thermal heat sink for active arrays. The antenna with forced air cooling provides up to 0.4 degrees C/W of thermal resistance. The antenna integration with a printed circuit board allows for high volume surface mount assembly of active devices.

READ MORE

Leading the charge - microgrids for domestic military installations

Published in:
IEEE Power & Energy Magazine, Vol. 11, No. 4, July/August 2013, pp. 40-5.

Summary

In today's interconnected battlefield, our war fighters are increasingly reliant on capabilities at domestic military installations to support critical missions, often in near real time. Many of the domestic installations of the U.S. Department of Defense (DoD) also support everything from sensitive research and development facilities such as microelectronics and biological laboratories to large industrial plants such as shipyards and aviation depots. These facilities depend on the electricity provided by the commercial electric grid. Extended-duration outages on the domestic electric grid will therefore both significantly affect the operational mission of the DoD and bring substantial economic consequences. The changing nature of electricity markets presents new opportunities for the DoD to reduce electricity costs while addressing its energy security needs. Demand response, ancillary service markets, and real-time pricing offer large consumers of electricity such as military installations a significant opportunity to use installation assets during grid-tied operation. Nevertheless, this is an opportunity the DoD can only exploit if it does so in a secure fashion, well protected from cyber threats.
READ LESS

Summary

In today's interconnected battlefield, our war fighters are increasingly reliant on capabilities at domestic military installations to support critical missions, often in near real time. Many of the domestic installations of the U.S. Department of Defense (DoD) also support everything from sensitive research and development facilities such as microelectronics and...

READ MORE

Estimation of Causal Peer Influence Effects

Author:
Published in:
International Conference on Machine Learning, 17-19 June 2013

Summary

The broad adoption of social media has generated interest in leveraging peer influence for inducing desired user behavior. Quantifying the causal effect of peer influence presents technical challenges, however, including how to deal with social interference, complex response functions and network uncertainty. In this paper, we extend potential outcomes to allow for interference, we introduce welldefined causal estimands of peer-influence, and we develop two estimation procedures: a frequentist procedure relying on a sequential randomization design that requires knowledge of the network but operates under complicated response functions, and a Bayesian procedure which accounts for network uncertainty but relies on a linear response assumption to increase estimation precision. Our results show the advantages and disadvantages of the proposed methods in a number of situations.
READ LESS

Summary

The broad adoption of social media has generated interest in leveraging peer influence for inducing desired user behavior. Quantifying the causal effect of peer influence presents technical challenges, however, including how to deal with social interference, complex response functions and network uncertainty. In this paper, we extend potential outcomes to...

READ MORE

A tunable AC atom interferometer magnetometer

Published in:
QIM 2013, Quantum Information and Measurement, 17-20 June 2013.

Summary

We demonstrate an atom interferometer designed to measure magnetic fields and field gradients. Here, we study various pulse sequences and show how they can be manipulated to filter unwanted frequencies and to enhance desired frequencies.
READ LESS

Summary

We demonstrate an atom interferometer designed to measure magnetic fields and field gradients. Here, we study various pulse sequences and show how they can be manipulated to filter unwanted frequencies and to enhance desired frequencies.

READ MORE

Wind-shear detection performance study for multifunction phased array radar (MPAR) risk reduction

Published in:
MIT Lincoln Laboratory Report ATC-409

Summary

Multifunction phased array radars (MPARs) of the future that may replace the current terminal wind-shear detection systems will need to meet the Federal Aviation Administration's (FAA) detection requirements. Detection performance issues related to on-airport siting of MPAR, its broader antenna beamwidth relative to the TDWR, and the change in operational frequency from C band to S band are analyzed. Results from the 2012 MPAR Wind-Shear Experiment (WSE) are presented, with microburst and gust-front detection statistics for the Oklahoma City TDWR and the National Weather Radar Testbed (NWRT) phased array radar, which are located 6 km apart. The NWRT has sensitivity and beamwidth similar to a conceptual terminal MPAR (TMPAR), which is a scaled-down version of a full-size MPAR. The microburst results show both the TDWR probability of detection (POD) and the estimated NWRT POD exceeding the 90% requirement. For gust fronts, however, the overall estimated NWRT POD was more than 10% lower than the TDWR POD. NWRT data is also used to demonstrate that rapid-scan phased array radar has the potential to enhance microburst prediction capability.
READ LESS

Summary

Multifunction phased array radars (MPARs) of the future that may replace the current terminal wind-shear detection systems will need to meet the Federal Aviation Administration's (FAA) detection requirements. Detection performance issues related to on-airport siting of MPAR, its broader antenna beamwidth relative to the TDWR, and the change in operational...

READ MORE

Sector workload model for benefits analysis and convective weather capacity prediction

Published in:
10th USA/Europe Air Traffic Management Research and Development Sem., ATM 2013, 10-13 June 2013.

Summary

En route sector capacity is determined mainly by controller workload. The operational capacity model used by the Federal Aviation Administration (FAA) provides traffic alert thresholds based entirely on hand-off workload. Its estimates are accurate for most sectors. However, it tends to over-estimate capacity in both small and large sectors because it does not account for conflicts and recurring tasks. Because of those omissions it cannot be used for accurate benefits analysis of workload-reduction initiatives, nor can it be extended to estimate capacity when hazardous weather increases the intensity of all workload types. We have previously reported on an improved model that accounts for all workload types and can be extended to handle hazardous weather. In this paper we present the results of a recent regression of that model using an extensive database of peak traffic counts for all United States en route sectors. The resulting fit quality confirms the workload basis of en route capacity. Because the model has excess degrees of freedom, the regression process returns multiple parameter combinations with nearly identical sector capacities. We analyze the impact of this ambiguity when using the model to quantify the benefits of workload reduction proposals. We also describe recent modifications to the weather-impacted version of the model to provide a more stable normalized capacity measure. We conclude with an illustration of its potential application to operational sector capacity forecasts in hazardous weather.
READ LESS

Summary

En route sector capacity is determined mainly by controller workload. The operational capacity model used by the Federal Aviation Administration (FAA) provides traffic alert thresholds based entirely on hand-off workload. Its estimates are accurate for most sectors. However, it tends to over-estimate capacity in both small and large sectors because...

READ MORE