Publications

Refine Results

(Filters Applied) Clear All

Automatic registration of LIDAR and optical images of urban scenes

Published in:
CVPR 2009, IEEE Conf. on Computer Vision and Pattern Recognition, 20-25 June 2009, pp. 2639-2646.

Summary

Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the LIDAR point cloud, which is characterized as a camera pose estimation problem. We propose a novel application of mutual information registration methods, which exploits the statistical dependency in urban scenes of optical apperance with measured LIDAR elevation. We utilize the well known downhill simplex optimization to infer camera pose parameters. We discuss three methods for measuring mutual information between LIDAR imagery and optical imagery. Utilization of OpenGL and graphics hardware in the optimization process yields registration times dramatically lower than previous methods. Using an initial registration comparable to GPS/INS accuracy, we demonstrate the utility of our algorithm with a collection of urban images and present 3D models created with the fused imagery.
READ LESS

Summary

Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the LIDAR point cloud, which is characterized as a camera pose estimation problem. We propose a...

READ MORE

Compressed sensing arrays for frequency-sparse signal detection and geolocation

Published in:
Proc. of the 2009 DoD High Performance Computing Modernization Program Users Group Conf., HPCMP-UGC, 15 June 2009, pp. 297-301.

Summary

Compressed sensing (CS) can be used to monitor very wide bands when the received signals are sparse in some basis. We have developed a compressed sensing receiver architecture with the ability to detect, demodulate, and geolocate signals that are sparse in frequency. In this paper, we evaluate detection, reconstruction, and angle of arrival (AoA) estimation via Monte Carlo simulation and find that, using a linear 4- sensor array and undersampling by a factor of 8, we achieve near-perfect detection when the received signals occupy up to 5% of the bandwidth being monitored and have an SNR of 20 dB or higher. The signals in our band of interest include frequency-hopping signals detected due to consistent AoA. We compare CS array performance using sensor-frequency and space-frequency bases, and determine that using the sensor-frequency basis is more practical for monitoring wide bands. Though it requires that the received signals be sparse in frequency, the sensor-frequency basis still provides spatial information and is not affected by correlation between uncompressed basis vectors.
READ LESS

Summary

Compressed sensing (CS) can be used to monitor very wide bands when the received signals are sparse in some basis. We have developed a compressed sensing receiver architecture with the ability to detect, demodulate, and geolocate signals that are sparse in frequency. In this paper, we evaluate detection, reconstruction, and...

READ MORE

A multi-frame, megahertz CCD imager

Published in:
IEEE Trans. Nuclear Sci., Vol. 56, No. 3, June 2009, pp. 1188-1192.

Summary

The Los Alamos National Laboratory's Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) generates flash radiographs of explosive experiments using two linear induction electron accelerators situated at right angles. The DARHT second axis accelerator generates an 18-MeV, 2 kA, 2 sec electron beam which is converted or "chopped" into four individual pulses ranging from 20 to 100 nsec in length at 2 MHz frequency. The individual electron beam pulses are down-converted by a segmented lutetium oxyorthosilicate scintillator, creating four visible light flashes, to image explosively driven events. To record these events, a high efficiency, high speed, imager has been fabricated which is capable of framing rates of 2 MHz. This device utilizes a 512 512 pixel charge coupled device (CCD) with a 25 cm2 active area, and incorporates an electronic shutter technology designed for back-illuminated CCD's, making this the largest and fastest back-illuminated CCD in the world. Characterizing an imager capable of this frame rate presents unique challenges. High speed LED drivers and intense radioactive sources are needed to perform basic measurements.We investigate properties normally associated with single-frame CCDs such as read noise, gain, full-well capacity, detective quantum efficiency (DQE), sensitivity, and linearity. In addition, we investigate several properties associated with the imager's multi-frame operation such as transient frame response and frame-to-frame isolation while contrasting our measurement techniques and results with more conventional devices.
READ LESS

Summary

The Los Alamos National Laboratory's Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) generates flash radiographs of explosive experiments using two linear induction electron accelerators situated at right angles. The DARHT second axis accelerator generates an 18-MeV, 2 kA, 2 sec electron beam which is converted or "chopped" into four individual...

READ MORE

Polyphase nonlinear equalization of time-interleaved analog-to-digital converters

Published in:
IEEE J. Sel. Top. Sig. Process., Vol. 3, No. 3, June 2009, pp. 362-373.

Summary

As the demand for higher data rates increases, commercial analog-to-digital converters (ADCs) are more commonly being implemented with multiple on-chip converters whose outputs are time-interleaved. The distortion generated by time-interleaved ADCs is now not only a function of the nonlinear behavior of the constituent circuitry, but also mismatches associated with interleaving multiple output streams. To mitigate distortion generated by time-interleaved ADCs, we have developed a polyphase NonLinear EQualizer (pNLEQ) which is capable of simultaneously mitigating distortion generated by both the on-chip circuitry and mismatches due to time interleaving. In this paper, we describe the pNLEQ architecture and present measurements of its performance.
READ LESS

Summary

As the demand for higher data rates increases, commercial analog-to-digital converters (ADCs) are more commonly being implemented with multiple on-chip converters whose outputs are time-interleaved. The distortion generated by time-interleaved ADCs is now not only a function of the nonlinear behavior of the constituent circuitry, but also mismatches associated with...

READ MORE

Machine translation for government applications

Published in:
Lincoln Laboratory Journal, Vol. 18, No. 1, June 2009, pp. 41-53.

Summary

The idea of a mechanical process for converting one human language into another can be traced to a letter written by René Descartes in 1629, and after nearly 400 years, this vision has not been fully realized. Machine translation (MT) using digital computers has been a grand challenge for computer scientists, mathematicians, and linguists since the first international conference on MT was held at the Massachusetts Institute of Technology in 1952. Currently, Lincoln Laboratory is achieving success in a highly focused research program that specializes in developing speech translation technology for limited language resource domains and in adapting foreign-language proficiency standards for MT evaluation. Our specialized research program is situated within a general framework for multilingual speech and text processing for government applications.
READ LESS

Summary

The idea of a mechanical process for converting one human language into another can be traced to a letter written by René Descartes in 1629, and after nearly 400 years, this vision has not been fully realized. Machine translation (MT) using digital computers has been a grand challenge for computer...

READ MORE

Advocate: a distributed architecture for speech-to-speech translation

Author:
Published in:
Lincoln Laboratory Journal, Vol. 18, No. 1, June 2009, pp. 54-65.

Summary

Advocate is a set of communications application programming interfaces and service wrappers that serve as a framework for creating complex and scalable real-time software applications from component processing algorithms. Advocate can be used for a variety of distributed processing applications, but was initially designed to use existing speech processing and machine translation components in the rapid construction of large-scale speech-to-speech translation systems. Many such speech-to-speech translation applications require real-time processing, and Advocate provides this speed with low-latency communication between services.
READ LESS

Summary

Advocate is a set of communications application programming interfaces and service wrappers that serve as a framework for creating complex and scalable real-time software applications from component processing algorithms. Advocate can be used for a variety of distributed processing applications, but was initially designed to use existing speech processing and...

READ MORE

Advocate: a distributed voice-oriented computing architecture

Published in:
North American Chapter of the Association for Computational Linguistics - Human Language Technologies Conf. (NAACL HLT 2009), 31 May - 5 June 2009.

Summary

Advocate is a lightweight and easy-to-use computing architecture that supports real-time, voice-oriented computing. It is designed to allow the combination of multiple speech and language processing components to create cohesive distributed applications. It is scalable, supporting local processing of all NLP/speech components when sufficient processing resources are available to one machine, or fully distributed/networked processing over an arbitrarily large compute structure when more compute resources are needed. Advocate is designed to operate in a large distributed test-bed in which an arbitrary number of NLP/speech services interface with an arbitrary number of Advocate clients applications. In this configuration, each Advocate client application employs automatic service discovery, calling them as required.
READ LESS

Summary

Advocate is a lightweight and easy-to-use computing architecture that supports real-time, voice-oriented computing. It is designed to allow the combination of multiple speech and language processing components to create cohesive distributed applications. It is scalable, supporting local processing of all NLP/speech components when sufficient processing resources are available to one...

READ MORE

Lithographically directed surface modification

Published in:
J. Vacuum Sci. Technol. B, Microelectron. Process. Phenon., Vol. 27, No. 6, p. 3031-3037.

Summary

The directed assembly of polystyrene-block-poly(methyl methacrylate) films on a variety of photolytically nanopatterned siloxane-modified surfaces was investigated. The amount of siloxane removal is related to the exposure dose of a 157 nm laser. The modified surfaces were imaged using a 157 nm interference exposure system to lithographically define areas of different surface energies to direct the assembly of the diblock copolymer films. The analysis of the surface energy aerial image provided insights into the exposure doses required to result in defect-free films. While the slope of the surface energy aerial image was not found to be important by itself, in concert with the difference in high and low surface energy regions, as well as the maximum value of the low surface energy region, it provided insight into conditions needed to direct self-assembly of the block copolymer films. Preliminary investigations concerning the extension of this methodology to 193 nm showed that the polar surface energy of arylsiloxane-modified surfaces can also be affected by 193 nm exposure.
READ LESS

Summary

The directed assembly of polystyrene-block-poly(methyl methacrylate) films on a variety of photolytically nanopatterned siloxane-modified surfaces was investigated. The amount of siloxane removal is related to the exposure dose of a 157 nm laser. The modified surfaces were imaged using a 157 nm interference exposure system to lithographically define areas of...

READ MORE

Wind-shear system cost benefit analysis update

Published in:
MIT Lincoln Laboratory Report ATC-341

Summary

A series of fatal commercial aviation accidents in the 1970s led to the development of systems and strategies to protect against wind shear. The Terminal Doppler Weather Radar (TDWR), Low Level Wind Shear Alert System (LLWAS), Weather Systems Processor (WSP) for Airport Surveillance Radars (ASR-9), pilot training and on-board wind shear detection equipment are all key protection components. While these systems have been highly effective, there are substantial costs associated with maintaining and operating ground-based systems. In addition, while over 85% of all major air carrier operations occur at airports protected by one of these ground-based wind-shear systems, the vast majority of smaller operations remain largely unprotected. This report assesses the technical and operational benefits of current and potential alternative ground-based systems as mitigations for the low-altitude wind-shear hazard. System performance and benefits for all of the current TDWR (46), ASR-9 WSP (35), and LLWAS (40) protected airports are examined, along with 40 currently unprotected airports. We considered in detail several alternatives and/or combinations for existing ground-based systems. These included the option to use data from current WSR-88D (or NEXRAD) and two potential future sensor deployments: (1) a commercially built pulsed-Doppler Lidar and (2) an X-band commercial Doppler weather radar. Wind-shear exposure estimates and simulation models for each wind shear protection component were developed for each site in order to accurately comare all alternatives. For the period 2010-2032, the current combination of wind-shear protection systems reduces teh $3.0 billion unprotected NAS overall wind-shear safety exposure to just $160 million over the entire study period. Overall, tehre were few alternatives that resulted in higher benefits than the TDWR, TDWR-LLWAS, and WSP configurations that currently exist at 81 airports. However, the cheaper operating costs of NEXRAD make it a potential alternative especially at LLWAS and non-wind-shear protected sites.
READ LESS

Summary

A series of fatal commercial aviation accidents in the 1970s led to the development of systems and strategies to protect against wind shear. The Terminal Doppler Weather Radar (TDWR), Low Level Wind Shear Alert System (LLWAS), Weather Systems Processor (WSP) for Airport Surveillance Radars (ASR-9), pilot training and on-board wind...

READ MORE

Safety analysis of upgrading to TCAS Version 7.1 using the 2008 U.S. Correlated Encounter Model

Published in:
MIT Lincoln Laboratory Report ATC-349

Summary

As a result of monitoring and modeling efforts by Eurocontrol and the FAA, two change proposals have been created to change the TCAS II V9.0 logic. The first, CP-112E, addresses the safety issues referred to as SA01. SA01 events have to do with the reversal logic contained in the TCAS algorithm, e.g., when TCAS reverses the sense of an RA from climb to descend. Typically, reversals occur to resolve deteriorating conditions during and encounter. V7.0 contained reversal logic based on certain assumptions and engineering judgment, but operational experience obtained since deployment has compelled a re-evaluation in areas of that logic, specifically having to do with late reversals. The second change proposal, CP-115, rectifies observed confusion surrounding the aural annunication AVSA during an RA by replacing it with the annunciation LOLO, and changing the TCAS V7.0 display and logic to appropriately support the change. Collectively, the changes to teh TCAS logic in both CP-112E and CP115 are referred to as TCAS II V7.1. Included in this document is a safety study that consideres V7.1 as a whole, and also the first safety study that uses teh U.S. correlated encounter model developed by Lincoln Laboratory for testing TCAS. Also included is a discussion of simulation capabilites developed at Lincoln Laboratory for evaluating CP-115 and for future analysis of TCAS in high density areas. Our study indicates that mroe risk lies in remaining with the current version of TCAS over upgrading to V7.1, and that no negative impact on safety in high density airspace occurs as a result of CP-115.
READ LESS

Summary

As a result of monitoring and modeling efforts by Eurocontrol and the FAA, two change proposals have been created to change the TCAS II V9.0 logic. The first, CP-112E, addresses the safety issues referred to as SA01. SA01 events have to do with the reversal logic contained in the TCAS...

READ MORE