Publications

Refine Results

(Filters Applied) Clear All

Marathon evaluation of optical materials for 157-nm lithography

Published in:
J. Microlithogr., Microfab., Microsyst., Vol. 2, No. 1, January 2003, pp. 19-26.

Summary

We present the methodology and recent results on the longterm evaluation of optical materials for 157-nm lithographic applications. We review the unique metrology capabilities that have been developed for accurately assessing optical properties of samples both online and offline, utilizing VUV spectrophotometry with in situlamp-based cleaning. We describe ultraclean marathon testing chambers that have been designed to decouple effects of intrinsic material degradation from extrinsic ambient effects. We review our experience with lithography-grade 157-nm lasers and detector durability. We review the current status of bulk materials for lenses, such as CaF(2) and BaF(2), and durability results of antireflectance coatings. Finally, we discuss the current state of laser durability of organic pellicles.
READ LESS

Summary

We present the methodology and recent results on the longterm evaluation of optical materials for 157-nm lithographic applications. We review the unique metrology capabilities that have been developed for accurately assessing optical properties of samples both online and offline, utilizing VUV spectrophotometry with in situlamp-based cleaning. We describe ultraclean marathon...

READ MORE

Phonetic speaker recognition with support vector machines

Published in:
Adv. in Neural Information Processing Systems 16, 2003 Conf., 8-13 December 2003, p. 1377-1384.

Summary

A recent area of significant progress in speaker recognition is the use of high level features-idiolect, phonetic relations, prosody, discourse structure, etc. A speaker not only has a distinctive acoustic sound but uses language in a characteristic manner. Large corpora of speech data available in recent years allow experimentation with long term statistics of phone patterns, word patterns, etc. of an individual. We propose the use of support vector machines and term frequency analysis of phone sequences to model a given speaker. To this end, we explore techniques for text categorization applied to the problem. We derive a new kernel based upon a linearization of likelihood ratio scoring. We introduce a new phone-based SVM speaker recognition approach that halves the error rate of conventional phone-based approaches.
READ LESS

Summary

A recent area of significant progress in speaker recognition is the use of high level features-idiolect, phonetic relations, prosody, discourse structure, etc. A speaker not only has a distinctive acoustic sound but uses language in a characteristic manner. Large corpora of speech data available in recent years allow experimentation with...

READ MORE

Modeling prosodic dynamics for speaker recognition

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, Vol. 4, 6-10 April 2003, pp. IV-788 - IV-791.

Summary

Most current state-of-the-art automatic speaker recognition systems extract speaker-dependent features by looking at short-term spectral information. This approach ignores long-term information that can convey supra-segmental information, such as prosodics and speaking style. We propose two approaches that use the fundamental frequency and energy trajectories to capture long-term information. The first approach uses bigram models to model the dynamics of the fundamental frequency and energy trajectories for each speaker. The second approach uses the fundamental frequency trajectories of a pre-defined set of works as the speaker templates and then, using dynamic time warping, computes the distance between templates and the works from the test message. The results presented in this work are on Switchboard 1 using the NIS extended date evaluation design. We show that these approaches can achieve an equal error rate of 3.7% which is a 77% relative improvement over a system based on short-term pitch and energy features alone.
READ LESS

Summary

Most current state-of-the-art automatic speaker recognition systems extract speaker-dependent features by looking at short-term spectral information. This approach ignores long-term information that can convey supra-segmental information, such as prosodics and speaking style. We propose two approaches that use the fundamental frequency and energy trajectories to capture long-term information. The first...

READ MORE

Cluster detection in databases : the adaptive matched filter algorithm and implementation

Published in:
Data Mining and Knowledge Discovery, Vol. 7, No. 1, January 2003, pp. 57-79.

Summary

Matched filter techniques are a staple of modern signal and image processing. They provide a firm foundation (both theoretical and empirical) for detecting and classifying patterns in statistically described backgrounds. Application of these methods to databases has become increasingly common in certain fields (e.g. astronomy). This paper describes an algorithm (based on statistical signal processing methods), a software architecture (based on a hybrid layered approach) and a parallelization scheme (based on a client/server model) for finding clusters in large astronomical databases. The method has proved successful in identifying clusters in real and simulated data. The implementation is flexible and readily executed in parallel on a network of workstations.
READ LESS

Summary

Matched filter techniques are a staple of modern signal and image processing. They provide a firm foundation (both theoretical and empirical) for detecting and classifying patterns in statistically described backgrounds. Application of these methods to databases has become increasingly common in certain fields (e.g. astronomy). This paper describes an algorithm...

READ MORE

A constrained joint optimization approach to dynamic sensor configuration

Author:
Published in:
36th Asilomar Conf. on Signals, Systems, and Computers, Vol. 2, 3-6 November 2002, pp. 1179-1183.

Summary

Through intelligent integration of sensing and processing functions, the sensing technology of the future is evolving towards networks of configurable sensors acting in concert. Realizing the potential of collaborative real-time configurable sensor systems presents a number of challenges including the need to address a number of challenges including the need to address the massive global optimization problem resulting from incorporating a large array of control parameters. This paper proposes a systematic approach to addressing complex global optimization problems by constraining the problem to a set of key control parameters and recasting a mission-oriented goal into a tractable joint optimization formula. Using idealized but realistic physical models, a systematic methodology to approach complex multi-dimensional joint optimization problems is used to compute system performance bounds for dynamic sensor configurations.
READ LESS

Summary

Through intelligent integration of sensing and processing functions, the sensing technology of the future is evolving towards networks of configurable sensors acting in concert. Realizing the potential of collaborative real-time configurable sensor systems presents a number of challenges including the need to address a number of challenges including the need...

READ MORE

ADS-B Airborne Measurements in Frankfurt

Published in:
21st AIAA/IEEE Digital Avionics Systems Conf., 27-31 October 2002, pp. 3.A.3-1 - 3.A.3-11.

Summary

Automatic Dependent Surveillance-Broadcast (ADS-B) was the subject of airborne testing in Frankfurt, Germany in May 2000. ADS-B is a system in which latitude-longitude information is broadcast regularly by aircraft, so that receivers on the ground and in other aircraft can determine the presence and accurate locations of the transmitting aircraft. In addition to the latitude and longitude, ADS-B transmissions include altitude, velocity, aircraft address, and a number of other items of optional information. The tests in Germany were aimed at assessing the performance of Mode S Extended Squitter, which is one of several possible implementations of ADS-B. Extended Squitter uses a conventional Mode S signal format, specifically the 112-bit reply format at 1090 MHz, currently being used operationally for air-to-ground communications and air-to-air coordination in TCAS (Traffic Alert and Collision Avoidance System).
READ LESS

Summary

Automatic Dependent Surveillance-Broadcast (ADS-B) was the subject of airborne testing in Frankfurt, Germany in May 2000. ADS-B is a system in which latitude-longitude information is broadcast regularly by aircraft, so that receivers on the ground and in other aircraft can determine the presence and accurate locations of the transmitting aircraft...

READ MORE

Validation techniques for ADS-B surveillance data

Published in:
21st DASC: Proc. of the Digital Avionics Systems Conf., Vol. 1, 27-31 October 2002, pp. 3.E.2-1 - 3.E.2-9.

Summary

Surveillance information forms the basis for providing traffic separation services by Air Traffic Control. The consequences of failures in the integrity and availability of surveillance data have been highlighted in near misses and more tragically, by midair collisions. Recognizing the importance and criticality of surveillance information, the U.S. Federal Aviation Administration (FAA) in common with most other Civil Aviation Authorities (CAAs) worldwide has implemented a surveillance architecture that emphasizes the independence of surveillance sources and the availability of crosschecks on all flight critical data. Automatic Dependent Surveillance Broadcast (ADS-B) changes this approach by combining the navigation and surveillance information into a single system element. ADS-B is a system within which individual aircraft distribute position estimates from onboard navigation equipment via a common communications channel. Any ADS-B receiver may then assemble a complete surveillance picture of nearby aircraft by listening to the common channel and combining the received surveillance reports with an onboard estimate of ownership position. This approach makes use of the increasing sophistication and affordability of navigation equipment (e.g. GPS-based avionics) to improve the accuracy and update rate of surveillance information. However, collapsing the surveillance and navigation systems into a common element increases the vulnerability of the system to erroneous information, both due to intentional and unintentional causes.
READ LESS

Summary

Surveillance information forms the basis for providing traffic separation services by Air Traffic Control. The consequences of failures in the integrity and availability of surveillance data have been highlighted in near misses and more tragically, by midair collisions. Recognizing the importance and criticality of surveillance information, the U.S. Federal Aviation...

READ MORE

Analysis and comparison of separation measurement errors in single sensor and multiple radar mosiac display terminal environments

Published in:
MIT Lincoln Laboratory Report ATC-306

Summary

This paper presents an analyis to estimate and characterize the errors in the measured separation distance between aircraft that are displayed on a radar screen to a controller in a single sensor terminal environment compared to a multiple radar mosiac terminal environment. The error in measured or displayed separation is the difference between the true separation or distance between aircraft in the air and the separation displayed to a controller on a radar screen. In order to eliminate as many variables as possible and to concentrate specifically on the differences between displayed separation errors in the two environments, for the purposes of this analysis, only full operation Mode S secondary beacon surveillance characteristics are considered. A summary of the Mode S secondary radar error sources and characteristics used to model the resultant errors in measured separation between aircraft in single and multi-radar terminal environments is presented. The analysis for average separation errors show that the performance of radars in providing separation services degrades with range. The analysis also shows that when using independent radars in a mosiac display, separation errors will increase, on average, compared to the performance when providing separation with a single radar. The data presented in the section on average separation errors is summarized by plotting the standard deviation of the separation error as a function of range for the single radar case and for the independent mosiac display case. The sections on typical and specific errors in separation measurements illustrate that the separation measurement errors are highly dependent on the geometry of the aircraft and radars. Applying average results to specific geometries can lead to counter intuitive results is illustrated in an example case presented in analysis.
READ LESS

Summary

This paper presents an analyis to estimate and characterize the errors in the measured separation distance between aircraft that are displayed on a radar screen to a controller in a single sensor terminal environment compared to a multiple radar mosiac terminal environment. The error in measured or displayed separation is...

READ MORE

The effect of identifying vulnerabilities and patching software on the utility of network intrusion detection

Published in:
Proc. 5th Int. Symp. on Recent Advances in Intrusion Detection, RAID 2002, 16-18 October 2002, pp. 307-326.

Summary

Vulnerability scanning and installing software patches for known vulnerabilities greatly affects the utility of network-based intrusion detection systems that use signatures to detect system compromises. A detailed timeline analysis of important remote-to-local vulnerabilities demonstrates (1) vulnerabilities in widely-used server software are discovered infrequently (at most 6 times a year) and (2) Software patches to prevent vulnerabilities from being exploited are available before or simultaneously with signatures. Signature-based intrusion detection systems will thus never detect successful system compromises on small secure sites when patches are installed as soon as they are available. Network intrusion detection systems may detect successful system compromises on large sites where it is impractical to eliminate all known vulnerabilities. On such sites, information from vulnerability scanning can be used to prioritize the large numbers of extraneous alerts caused by failed attacks and normal background MIC. On one class B network with roughly 10 web servers, this approach successfully filtered out 95% of all remote-to-local alerts.
READ LESS

Summary

Vulnerability scanning and installing software patches for known vulnerabilities greatly affects the utility of network-based intrusion detection systems that use signatures to detect system compromises. A detailed timeline analysis of important remote-to-local vulnerabilities demonstrates (1) vulnerabilities in widely-used server software are discovered infrequently (at most 6 times a year) and...

READ MORE

Investigation of the physical and practical limits of dense-only phase shift lithography for circuit feature definition

Published in:
J. Microlith., Microfab., Microsyst., Vol. 1, No. 3, October 2002, pp. 243-252.

Summary

The rise of low- k1 optical lithography in integrated circuit manufacturing has introduced new questions concerning the physical and practical limits of particular subwavelength resolution-enhanced imaging approaches. For a given application, trade-offs between mask complexity, design cycle time, process latitude and process throughput must be well understood. It has recently been shown that a dense-only phase shifting mask (PSM) approach can be applied to technology nodes approaching the physical limits of strong PSM with no proximity effects. Such an approach offers the benefits of reduced mask complexity and design cycle time, at the expense of decreased process throughput and limited design flexibility. In particular, dense-only methods offer k1,0.3, thus enabling 90 nm node lithography with high-numerical aperture 248 nm exposure systems. We present the results of experiments, simulations, and analysis designed to explore the trade-offs inherent in dense-only phase shift lithography. Gate and contact patterns corresponding to various fully scaled circuits are presented, and the relationship between process complexity and design latitude is discussed. Particular attention is given to approaches for obtaining gate features in both the horizontal and vertical orientation. Since semiconductor investment is dependent on cost amortization, the applicability of these methods is also considered in terms of production volume.
READ LESS

Summary

The rise of low- k1 optical lithography in integrated circuit manufacturing has introduced new questions concerning the physical and practical limits of particular subwavelength resolution-enhanced imaging approaches. For a given application, trade-offs between mask complexity, design cycle time, process latitude and process throughput must be well understood. It has recently...

READ MORE