Publications

Refine Results

(Filters Applied) Clear All

Flight test results of the Earth Observing-1 Advanced Land Imager

Published in:
SPIE, Vol. 4814, Earth Observing Systems VII, 7-10 July 2002, pp. 296-305.

Summary

The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range fiom 0.433 to 2.35 um. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.
READ LESS

Summary

The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise...

READ MORE

Proton irradiations of large area Hg(1-x)Cd(x)Te photovoltaic detectors for the cross-track infrared sounder

Published in:
SPIE Vol. 4820, Pt. 1, Infrared Technology and Applications XXVIII, 7-11 July 2002, pp. 479-490.

Summary

The effect of radiation on Hg(1-x)Cd(x)Te photodiodes is an important parameter to understand when determining the long-term performance limitations for the Cross-track Infrared Sounder (CrIS), a Fourier Transform interferometric sensor that will fly as part of the National Polar-orbiting Operational Enviornmental Satellite System (NPOESS). The CrIS sensor uses relatively large area photovoltaic detectors, 1mm in diameter. Each p-on-n Hg(1-x)Cd(x)Te photodiode consists of MBE grown, n-type material on lattice matched CdZnTe, with arsenic implantation used to form the junction. A 1mm diameter detector is achieved by using a lateral collection. Solar, and trapped protons are a significant source of radiation in the NPOESS 833 km orbits. We irradiated 22 LWIR detectors with protons at the Harvard Cyclotron Laboratory (HCL) and monitored the I-V performance and dynamic impedance of each detector. Three groups of detectors were irradiated with either 44, 99, 153-MeV protons, each between 1x10(10) - 4x10(12) p+/cm(2) (total range ~ 0.7 - 690 krad(Si)). Several I-V data sets were collected within that fluence range at all three energies. All the detectors were warmed to room temperature for approximately 96 hours following the largest proton dose, recooled, and then re-characterized in terms of I-V performance and dynamic impedance. The total noise increase predicted for CrIS after 7-years in orbit is less than 1%.
READ LESS

Summary

The effect of radiation on Hg(1-x)Cd(x)Te photodiodes is an important parameter to understand when determining the long-term performance limitations for the Cross-track Infrared Sounder (CrIS), a Fourier Transform interferometric sensor that will fly as part of the National Polar-orbiting Operational Enviornmental Satellite System (NPOESS). The CrIS sensor uses relatively large...

READ MORE

ASR-9 Weather Systems Processor (WSP) signal processing algorithms

Author:
Published in:
MIT Lincoln Laboratory Report ATC-255

Summary

Thunderstorm activity and associated low-altitude wind shear constitute a significant safety hazard to aviation, particularly during operations near airport terminals where aircraft altitude is low and flight routes are constrained. The Federal Aviation Administration (FAA) has procured several dedicated meteorological sensors (Terminal Doppler Weather Radar (TDWR), Network Expansion Low Level Wind Shear Alert System (LLWAS) at major airports to enhance the safety and efficiency of operations during convective weather. A hardware and software modification to existing Airport Surveillance Radars (ASR-9)-the Weather Systems Processor (WSP)-will provide similar capabilities at much lower cost, thus allowing the FAA to extend its protection envelope to medium density airports and airports where thunderstorm activity is less frequent. Following successful operation demonstrations of a prototype ASR-WSP, the FAA has procured approximately 35 WSP's for nationwide deployment. Lincoln Laboratory was responsible for development of all data processing algorithms, which were provided as Government Furnished Equipment (GFE), to be implemented by the full-scale development (FSD) contractor without modification. This report defines the operations that are used to produce images of atmospheric reflectivity, Doppler velocity and data quality that are used by WSP's meteorological product algorithms to generate automated information on hazardous wind shear and other phenomena. Principle requirements are suppression of interference (e.g. ground clutter, moving points targets, meteorological and ground echoes originating from beyond the radar's unambiguous range), generation of meteorologically relevant images and estimates of data quality. Hereafter, these operations will be referred to as "signal processing" and the resulting images as "base data."
READ LESS

Summary

Thunderstorm activity and associated low-altitude wind shear constitute a significant safety hazard to aviation, particularly during operations near airport terminals where aircraft altitude is low and flight routes are constrained. The Federal Aviation Administration (FAA) has procured several dedicated meteorological sensors (Terminal Doppler Weather Radar (TDWR), Network Expansion Low Level...

READ MORE

Broadband (200-1000 nm) back-illuminated ccd imagers

Summary

Improved and stable blue/UV quantum efficiency has been demonstrated on 2Kx4K imagers using molecular-beam epitaxy to create a thin doped layer on the back surface. Quantum efficiency data on thick (40-50 pm) imagers with single and dual-layer anti-reflection coatings is presented that demonstrates high and broadband response. Measurements of the optical point-spread response show the devices to be fully depleted with good response across a broad spectrum, but interesting features appear in the near-IR as a result of deeply penetrating light being scattered off the surface structure of the CCD.
READ LESS

Summary

Improved and stable blue/UV quantum efficiency has been demonstrated on 2Kx4K imagers using molecular-beam epitaxy to create a thin doped layer on the back surface. Quantum efficiency data on thick (40-50 pm) imagers with single and dual-layer anti-reflection coatings is presented that demonstrates high and broadband response. Measurements of the...

READ MORE

Machine intelligent gust front algorithm for the WSP

Author:
Published in:
MIT Lincoln Laboratory Report ATC-274

Summary

The Machine Intelligent Gust Front Algorithm (MIGFA) utilizes multi-dimensional image processing and fuzzy logic techniques to identify gust fronts in Doppler radar data generated by the ASR-9 Weather Systems Processor (WSP). The algorithm generates products that support both safety and planning functions for ATC. Outputs include current and predicted locations of gust fronts, as well as estimates of the wind shear and wind shift associated with each gust front. This document provides both high level and detailed functional descriptions of FAA build 2.0 of the WSP MIGFA. The document was written with many explicit references to data structures and routines in the actual software in order that it may serve as a useful algorithm development and programmers reference guide.
READ LESS

Summary

The Machine Intelligent Gust Front Algorithm (MIGFA) utilizes multi-dimensional image processing and fuzzy logic techniques to identify gust fronts in Doppler radar data generated by the ASR-9 Weather Systems Processor (WSP). The algorithm generates products that support both safety and planning functions for ATC. Outputs include current and predicted locations...

READ MORE

A comparison of boundary layer wind estimation techniques

Published in:
10th Conf. on Aviation, Range, and Aerospace Meteorology, 13-16 May 2002, pp. 331-33334.

Summary

Accurate, short-term (0-2 hour) forecasts of convective initiation provide critical information about weather that has a major impact on aviation safety and system capacity. The Terminal Convective Weather Forecast (TCWF) algorithm is a key component of the FAA's operational Integrated Terminal Weather System (ITWS). Convective forecasts rely, in part, upon detection of convergence zones in the boundary layer. Detection of convergence requires accurate, high-resolution wind estimates, which may be based on measurements from many sources, including Terminal Doppler Weather Radar (TDWR), Next Generation Weather Radar (NEXRAD), Automatic Weather Observation System/Automatic Surface Observation System (AWOS/ASOS), aircraft (via the Meteorological Data Collection and Reporting System, MDCRS) and Low Level Wind Shear Alert System (LLWAS). These data may be directly analyzed, combined with satellite and sounding data or ingested into physical models that estimate winds and produce short term forecasts. We compare two windfield estimation techniques: Terminal Winds (TWINDS) [Cole et. al., 2000], an optimal estimation algorithm developed at Lincoln Laboratory that is deployed operationally in ITWS, and Variational Doppler Radar Analysis System (VDRAS) [Sun and Crook, 2001], a 4DVAR algorithm developed and fielded by the Research Applications Program (RAP) at NCAR. These techniques differ markedly in their use of physical models: TWINDS applies no physical constraints to its analysis, while VDRAS uses a 4DVAR technique to fit the data with a boundary layer model as a strong constraint. The techniques also differ in their computational requirements: TWINDS requires substantially less computational power than VDRAS. We were able to run TWINDS at higher horizontal resolution and update rate (1km grid spacing, 5 minute update) than VDRAS (2km and 12 minutes).
READ LESS

Summary

Accurate, short-term (0-2 hour) forecasts of convective initiation provide critical information about weather that has a major impact on aviation safety and system capacity. The Terminal Convective Weather Forecast (TCWF) algorithm is a key component of the FAA's operational Integrated Terminal Weather System (ITWS). Convective forecasts rely, in part, upon...

READ MORE

A web-based display and access point to the FAA's Integrated Terminal Weather System (ITWS)

Published in:
10th Conf. on Aviation, Range and Aerospace Meteorology, 13-16 May 2002, pp. 206-209.

Summary

The Integrated Terminal Weather System (ITWS) is a high-resolution weather information system designed to operate within the TRACONs surrounding the country's major airports. Targeted for those airports most often adversely affected by convective weather, the system was developed for the Federal Aviation Administration (FAA) by the Massachusetts Institute of Technology's Lincoln Laboratory (MIT/LL) Weather Sensing Group. The ITWS acquires data from Next Generation Radars (NEXRAD), Terminal Doppler Weather Radars (TDWR), Airport Surveillance Radars (ASR-9), Low Level Windshear Alert Systems (LLWAS), the National Lightning Detection Network (NLDN), Automated Weather Observing Stations (AWOS/ASOS), and aircraft in flight. The system integrates the data to provide consistent weather information in a form that is usable without further meteorological interpretation. This information includes six-level precipitation at a number of ranges, windshear and microburst detection and prediction, storm motion and extrapolated position, wind fields, gust fronts, lightning, and storm cell information (hail, mesocyclone notification, and echo tops). A set of direct users of ITWS (FAA users at TRACONs, Air Traffic Control Towers, and en-route centers) will receive ITWS weather products through FAA-provided Situation Displays (SDs) that are tied directly to the ITWS processor. In addition, the FAA has sponsored development of an ITWS External Users Data Distribution System to provide real-time ITWS products to those users who do not have access to a dedicated SD. The data distribution system is being developed in conjunction with the upcoming deployment of the ITWS (2002-2004) as an operational FAA system serving 47 major airports. The need for a remotely accessible display is strongly supported by draft recommendations recently released by the National Transportation Safety Board (NTSB) that call for U.S. air carriers and all air traffic control facilities to have access to data from FAA terminal weather information systems. In addition, the Collaborative Decision Making program (CDM) has highlighted the need to make the information widely available to airlines. MIT/LL has operated demonstration ITWS systems since 1994, and a demonstration website since 1997. Most major airlines have successfully accessed the ITWS demonstration products in real time via Web browsers and have used this information to improve safety and reduce delays (Maloney, 2000). Benefits specific to airline dispatch include support for decisions made during diversion situations and improvements in hub operations . By sharing a common view of the same operational environment, controllers, dispatchers and other aviation decision makers and stakeholders have been better able to understand and coordinate the decisions that affect air traffic in the terminal area and surrounding en route airspace (Evans 2000). This paper describes the goals of the ITWS External Users Data Distribution System development project, including a discussion of the system architecture, data distribution and access methods, and the web-based interface.
READ LESS

Summary

The Integrated Terminal Weather System (ITWS) is a high-resolution weather information system designed to operate within the TRACONs surrounding the country's major airports. Targeted for those airports most often adversely affected by convective weather, the system was developed for the Federal Aviation Administration (FAA) by the Massachusetts Institute of Technology's...

READ MORE

An automated, operational two hour convective weather forecast for the Corridor Integrated Weather

Published in:
10th Conf. on Aviation, Range and Aerospace Meteorology, 13-16 May 2002, pp. 116-119.

Summary

The FAA Aviation Weather Research Program (AWRP) is an initiative of the Weather and Flight Service Systems Integrated Product Team, AUA400. One of the goals of the AWRP is to create accurate and accessible forecasts of hazardous weather tailored to the needs of the aviation community. Pursuant to this goal, the AWRP has sponsored the collaboration of the Research Applications Program (RAP) of the National Center for Atmospheric Research (NCAR), the Aviation and Forecast Research Divisions at the NOAA Forecast Systems Laboratory (FSL), the Weather Sensing Group of the Massachusetts Institute of Technology's Lincoln Laboratory (MIT/LL) and the National Severe Storm Laboratory (NSSL) on a Product Development Team (PDT). This Convective Weather PDT is developing an automated system that combines real-time weather- radar data with the current "state-of-the-art" convective weather prediction algorithms to produce forecasts of convective weather for the heavily traveled air traffic routes in the Great Lakes/Northeast corridor (Chicago to New York). This Regional Convective Weather Forecast (RCWF) will be provided to traffic flow management decision-makers as part of the proof-of-concept Corridor Integrated Weather System (CIWS), which began operations in July 2001 with a l-hr animated Regional Convective Weather Forecast (RCWF).
READ LESS

Summary

The FAA Aviation Weather Research Program (AWRP) is an initiative of the Weather and Flight Service Systems Integrated Product Team, AUA400. One of the goals of the AWRP is to create accurate and accessible forecasts of hazardous weather tailored to the needs of the aviation community. Pursuant to this goal...

READ MORE

An improved gust front detection capability for the ASR-9 WSP

Published in:
10th Conf. on Aviation, Range, and Aerospace Meteorology, 13-16 May 2002, pp. 379-382.

Summary

The Weather Systems Processor (WSP) is being deployed by FAA at 35 medium and high-density ASR-9 equipped airports across the United States. The Machine Intelligent Gust Front Algorithm (MIGFA) developed at Lincoln Laboratory provides important gust front detection and tracking capability for this system as well as other FAA systems including Terminal Doppler Weather Radar (TDWR) and Integrated Terminal Weather System (ITWS). The algorithm utilizes multidimensional image processing, data fusion, and fuzzy logic techniques to recognize gust fronts observed in Doppler radar data. Some deficiencies in algorithm performance have been identified through ongoing analysis of data from two initial limited production WSP sites in Austin, TX (AUS) and Albuquerque, NM (ABQ). At AUS, the most common cause of false alarms is bands of low-reflectivity rain echoes having shapes and intensities similar to gust front thin line echoes. Missed or late detections have occasionally occurred when gust fronts are near or embedded in the leading edge of approaching line storms, where direct radar evidence of the gust front (e.g.. thin line echo, velocity convergence) may be fragmented or absent altogether. In ABQ, "canyon wind" events emanating, from mountains located just east of the airport occur with very little lead time, and often with little or no radar signatures, making timely detection on the basis of the radar data alone difficult. MIGFA is equipped with numerous parameters and thresholds that can be adjusted dynamically based on recognition of the local or regional weather context in which it is operating. Through additional contextual weather information processing, this dynamic sensitization capability has been further exploited to address the deficiencies noted above, resulting in an appreciable improvement in performance on data collected at the two WSP sites.
READ LESS

Summary

The Weather Systems Processor (WSP) is being deployed by FAA at 35 medium and high-density ASR-9 equipped airports across the United States. The Machine Intelligent Gust Front Algorithm (MIGFA) developed at Lincoln Laboratory provides important gust front detection and tracking capability for this system as well as other FAA systems...

READ MORE

Aircraft encounters with thunderstorms in enroute vs. terminal airspace above Memphis, Tennesssee

Published in:
Proc. 10th Conf. on Aviation, Range and Aerospace Meteorology, 13-16 May 2002, pp. 162-165.

Summary

To date, very little attention has been given to quantifying the effects of thunderstorms on air traffic in enroute airspace. What types of storms cause pilots to deviate from their nominal flight routes? What types of storms do pilots fly through? Around? Over? When thunderstorms are forecast to affect a particular region, how many planes will need to be rerouted? Which ones? Which aspects of the storm need to be accurately forecast in order to answer those questions? How does the forecast accuracy affect the quality of airspace capacity predictions? Quantitative answers to these questions would contribute to the design of useful decision support tools. Federal Aviation Administration decision support tools are being equipped with the ability for air traffic managers to define dynamic "flow constrained areas" (FCAs). Each FCA will be a polygon in latitude/longitude space with ceiling and floor altitudes and a motion vector. One primary use for FCAs will be to define regions that do, or probably will, contain convective thunderstorm activity. These tools will help air traffic managers decide which planes to re-route around the weather and which planes have a reasonable chance of flying through, between, or over the storms. Although it will be helpful to have the ability to manually define FCAs in the traffic managers' tools, the efficiency of the solutions that will be worked out with those tools would be greatly enhanced by answers to the questions posed above. In our prior work we have attempted to quantify the behavior of pilots who encounter thunderstorms in terminal airspace during the final 60 nautical miles of flight. In this study we compare the storm avoidance behavior of pilots in enroute airspace with that of pilots who encountered the very same storms at lower altitudes, in terminal airspace. The study is preliminary, but it complements the terminal work, affords some insight into pilot behavior, and raises questions that should be addressed in a larger study.
READ LESS

Summary

To date, very little attention has been given to quantifying the effects of thunderstorms on air traffic in enroute airspace. What types of storms cause pilots to deviate from their nominal flight routes? What types of storms do pilots fly through? Around? Over? When thunderstorms are forecast to affect a...

READ MORE