Publications

Refine Results

(Filters Applied) Clear All

Building low-power trustworthy systems: cyber-security considerations for real-time physiological status monitoring

Summary

Real-time monitoring of physiological data can reduce the likelihood of injury in noncombat military personnel and first-responders. MIT Lincoln Laboratory is developing a tactical Real-Time Physiological Status Monitoring (RT-PSM) system architecture and reference implementation named OBAN (Open Body Area Network), the purpose of which is to provide an open, government-owned framework for integrating multiple wearable sensors and applications. The OBAN implementation accepts data from various sensors enabling calculation of physiological strain information which may be used by squad leaders or medics to assess the team's health and enhance safety and effectiveness of mission execution. Security in terms of measurement integrity, confidentiality, and authenticity is an area of interest because OBAN system components exchange sensitive data in contested environments. In this paper, we analyze potential cyber-security threats and their associated risks to a generalized version of the OBAN architecture and identify directions for future research. The threat analysis is intended to inform the development of secure RT-PSM architectures and implementations.
READ LESS

Summary

Real-time monitoring of physiological data can reduce the likelihood of injury in noncombat military personnel and first-responders. MIT Lincoln Laboratory is developing a tactical Real-Time Physiological Status Monitoring (RT-PSM) system architecture and reference implementation named OBAN (Open Body Area Network), the purpose of which is to provide an open, government-owned...

READ MORE

Writing your first paper: from code to research

Published in:
Grace Hopper Celebration of Women in Computing, 19-21 October 2016.

Summary

'Publish or perish,' once a term used to refer to the pressure placed on professors to publish their research has since expanded to apply to students and professionals in industry. There are numerous benefits to doing research and publishing the results, including personal satisfaction, career advancement, and prestige. In this session we will discuss how to begin doing research and write a first paper.
READ LESS

Summary

'Publish or perish,' once a term used to refer to the pressure placed on professors to publish their research has since expanded to apply to students and professionals in industry. There are numerous benefits to doing research and publishing the results, including personal satisfaction, career advancement, and prestige. In this...

READ MORE

Multi-modal audio, video and physiological sensor learning for continuous emotion prediction

Summary

The automatic determination of emotional state from multimedia content is an inherently challenging problem with a broad range of applications including biomedical diagnostics, multimedia retrieval, and human computer interfaces. The Audio Video Emotion Challenge (AVEC) 2016 provides a well-defined framework for developing and rigorously evaluating innovative approaches for estimating the arousal and valence states of emotion as a function of time. It presents the opportunity for investigating multimodal solutions that include audio, video, and physiological sensor signals. This paper provides an overview of our AVEC Emotion Challenge system, which uses multi-feature learning and fusion across all available modalities. It includes a number of technical contributions, including the development of novel high- and low-level features for modeling emotion in the audio, video, and physiological channels. Low-level features include modeling arousal in audio with minimal prosodic-based descriptors. High-level features are derived from supervised and unsupervised machine learning approaches based on sparse coding and deep learning. Finally, a state space estimation approach is applied for score fusion that demonstrates the importance of exploiting the time-series nature of the arousal and valence states. The resulting system outperforms the baseline systems [10] on the test evaluation set with an achieved Concordant Correlation Coefficient (CCC) for arousal of 0.770 vs 0.702 (baseline) and for valence of 0.687 vs 0.638. Future work will focus on exploiting the time-varying nature of individual channels in the multi-modal framework.
READ LESS

Summary

The automatic determination of emotional state from multimedia content is an inherently challenging problem with a broad range of applications including biomedical diagnostics, multimedia retrieval, and human computer interfaces. The Audio Video Emotion Challenge (AVEC) 2016 provides a well-defined framework for developing and rigorously evaluating innovative approaches for estimating the...

READ MORE

Detecting depression using vocal, facial and semantic communication cues

Summary

Major depressive disorder (MDD) is known to result in neurophysiological and neurocognitive changes that affect control of motor, linguistic, and cognitive functions. MDD's impact on these processes is reflected in an individual's communication via coupled mechanisms: vocal articulation, facial gesturing and choice of content to convey in a dialogue. In particular, MDD-induced neurophysiological changes are associated with a decline in dynamics and coordination of speech and facial motor control, while neurocognitive changes influence dialogue semantics. In this paper, biomarkers are derived from all of these modalities, drawing first from previously developed neurophysiologically motivated speech and facial coordination and timing features. In addition, a novel indicator of lower vocal tract constriction in articulation is incorporated that relates to vocal projection. Semantic features are analyzed for subject/avatar dialogue content using a sparse coded lexical embedding space, and for contextual clues related to the subject's present or past depression status. The features and depression classification system were developed for the 6th International Audio/Video Emotion Challenge (AVEC), which provides data consisting of audio, video-based facial action units, and transcribed text of individuals communicating with the human-controlled avatar. A clinical Patient Health Questionnaire (PHQ) score and binary depression decision are provided for each participant. PHQ predictions were obtained by fusing outputs from a Gaussian staircase regressor for each feature set, with results on the development set of mean F1=0.81, RMSE=5.31, and MAE=3.34. These compare favorably to the challenge baseline development results of mean F1=0.73, RMSE=6.62, and MAE=5.52. On test set evaluation, our system obtained a mean F1=0.70, which is similar to the challenge baseline test result. Future work calls for consideration of joint feature analyses across modalities in an effort to detect neurological disorders based on the interplay of motor, linguistic, affective, and cognitive components of communication.
READ LESS

Summary

Major depressive disorder (MDD) is known to result in neurophysiological and neurocognitive changes that affect control of motor, linguistic, and cognitive functions. MDD's impact on these processes is reflected in an individual's communication via coupled mechanisms: vocal articulation, facial gesturing and choice of content to convey in a dialogue. In...

READ MORE

Side channel authenticity discriminant analysis for device class identification

Summary

Counterfeit microelectronics present a significant challenge to commercial and defense supply chains. Many modern anti-counterfeit strategies rely on manufacturer cooperation to include additional identification components. We instead propose Side Channel Authenticity Discriminant Analysis (SICADA) to leverage physical phenomena manifesting from device operation to match suspect parts to a class of authentic parts. This paper examines the extent that power dissipation information can be used to separate unique classes of devices. A methodology for distinguishing device types is presented and tested on both simulation data of a custom circuit and empirical measurements of Microchip dsPIC33F microcontrollers. Experimental results show that power side channels contain significant distinguishing information to identify parts as authentic or suspect counterfeit.
READ LESS

Summary

Counterfeit microelectronics present a significant challenge to commercial and defense supply chains. Many modern anti-counterfeit strategies rely on manufacturer cooperation to include additional identification components. We instead propose Side Channel Authenticity Discriminant Analysis (SICADA) to leverage physical phenomena manifesting from device operation to match suspect parts to a class of...

READ MORE

How deep neural networks can improve emotion recognition on video data

Published in:
ICIP: 2016 IEEE Int. Conf. on Image Processing, 25-28 September 2016.

Summary

We consider the task of dimensional emotion recognition on video data using deep learning. While several previous methods have shown the benefits of training temporal neural network models such as recurrent neural networks (RNNs) on hand-crafted features, few works have considered combining convolutional neural networks (CNNs) with RNNs. In this work, we present a system that performs emotion recognition on video data using both CNNs and RNNs, and we also analyze how much each neural network component contributes to the system's overall performance. We present our findings on videos from the Audio/Visual+Emotion Challenge (AV+EC2015). In our experiments, we analyze the effects of several hyperparameters on overall performance while also achieving superior performance to the baseline and other competing methods.
READ LESS

Summary

We consider the task of dimensional emotion recognition on video data using deep learning. While several previous methods have shown the benefits of training temporal neural network models such as recurrent neural networks (RNNs) on hand-crafted features, few works have considered combining convolutional neural networks (CNNs) with RNNs. In this...

READ MORE

High-throughput ingest of data provenance records in Accumulo

Published in:
HPEC 2016: IEEE Conf. on High Performance Extreme Computing, 13-15 September 2016.

Summary

Whole-system data provenance provides deep insight into the processing of data on a system, including detecting data integrity attacks. The downside to systems that collect whole-system data provenance is the sheer volume of data that is generated under many heavy workloads. In order to make provenance metadata useful, it must be stored somewhere where it can be queried. This problem becomes even more challenging when considering a network of provenance-aware machines all collecting this metadata. In this paper, we investigate the use of D4M and Accumulo to support high-throughput data ingest of whole-system provenance data. We find that we are able to ingest 3,970 graph components per second. Centrally storing the provenance metadata allows us to build systems that can detect and respond to data integrity attacks that are captured by the provenance system.
READ LESS

Summary

Whole-system data provenance provides deep insight into the processing of data on a system, including detecting data integrity attacks. The downside to systems that collect whole-system data provenance is the sheer volume of data that is generated under many heavy workloads. In order to make provenance metadata useful, it must...

READ MORE

In-storage embedded accelerator for sparse pattern processing

Published in:
HPEC 2016: IEEE Conf. on High Performance Extreme Computing, 13-15 September 2016.

Summary

We present a novel architecture for sparse pattern processing, using flash storage with embedded accelerators. Sparse pattern processing on large data sets is the essence of applications such as document search, natural language processing, bioinformatics, subgraph matching, machine learning, and graph processing. One slice of our prototype accelerator is capable of handling up to 1TB of data, and experiments show that it can outperform C/C++ software solutions on a 16-core system at a fraction of the power and cost; an optimized version of the accelerator can match the performance of a 48-core server.
READ LESS

Summary

We present a novel architecture for sparse pattern processing, using flash storage with embedded accelerators. Sparse pattern processing on large data sets is the essence of applications such as document search, natural language processing, bioinformatics, subgraph matching, machine learning, and graph processing. One slice of our prototype accelerator is capable...

READ MORE

Benchmarking SciDB data import on HPC systems

Summary

SciDB is a scalable, computational database management system that uses an array model for data storage. The array data model of SciDB makes it ideally suited for storing and managing large amounts of imaging data. SciDB is designed to support advanced analytics in database, thus reducing the need for extracting data for analysis. It is designed to be massively parallel and can run on commodity hardware in a high performance computing (HPC) environment. In this paper, we present the performance of SciDB using simulated image data. The Dynamic Distributed Dimensional Data Model (D4M) software is used to implement the benchmark on a cluster running the MIT SuperCloud software stack. A peak performance of 2.2M database inserts per second was achieved on a single node of this system. We also show that SciDB and the D4M toolbox provide more efficient ways to access random sub-volumes of massive datasets compared to the traditional approaches of reading volumetric data from individual files. This work describes the D4M and SciDB tools we developed and presents the initial performance results. This performance was achieved by using parallel inserts, a in-database merging of arrays as well as supercomputing techniques, such as distributed arrays and single-program-multiple-data programming.
READ LESS

Summary

SciDB is a scalable, computational database management system that uses an array model for data storage. The array data model of SciDB makes it ideally suited for storing and managing large amounts of imaging data. SciDB is designed to support advanced analytics in database, thus reducing the need for extracting...

READ MORE

Enhancing HPC security with a user-based firewall

Summary

High Performance Computing (HPC) systems traditionally allow their users unrestricted use of their internal network. While this network is normally controlled enough to guarantee privacy without the need for encryption, it does not provide a method to authenticate peer connections. Protocols built upon this internal network, such as those used in MPI, Lustre, Hadoop, or Accumulo, must provide their own authentication at the application layer. Many methods have been employed to perform this authentication, such as operating system privileged ports, Kerberos, munge, TLS, and PKI certificates. However, support for all of these methods requires the HPC application developer to include support and the user to configure and enable these services. The user-based firewall capability we have prototyped enables a set of rules governing connections across the HPC internal network to be put into place using Linux netfilter. By using an operating system-level capability, the system is not reliant on any developer or user actions to enable security. The rules we have chosen and implemented are crafted to not impact the vast majority of users and be completely invisible to them. Additionally, we have measured the performance impact of this system under various workloads.
READ LESS

Summary

High Performance Computing (HPC) systems traditionally allow their users unrestricted use of their internal network. While this network is normally controlled enough to guarantee privacy without the need for encryption, it does not provide a method to authenticate peer connections. Protocols built upon this internal network, such as those used...

READ MORE