Publications

Refine Results

(Filters Applied) Clear All

BubbleNet: A Cyber Security Dashboard for Visualizing Patterns

Published in:
Proceeding of 2016 Eurographics Conference on Visualization (EuroVis)

Summary

The field of cyber security is faced with ever-expanding amounts of data and a constant barrage of cyber attacks. Within this space, we have designed BubbleNet as a cyber security dashboard to help network analysts identify and summarize patterns within the data.
READ LESS

Summary

The field of cyber security is faced with ever-expanding amounts of data and a constant barrage of cyber attacks. Within this space, we have designed BubbleNet as a cyber security dashboard to help network analysts identify and summarize patterns within the data.

READ MORE

Single-photon-sensitive solid-state image sensors for flash lidar

Author:
Published in:
CLEO 2016, Laser Science to Photonic Applications, 5-10 June 2016.

Summary

MIT Lincoln Laboratory has developed lidar systems based on Geiger-mode avalanche photodiodes using both silicon and InGaAs. This technology has enabled terrain mapping and foliage penetration systems with exquisite sensitivity and high area coverage rate.
READ LESS

Summary

MIT Lincoln Laboratory has developed lidar systems based on Geiger-mode avalanche photodiodes using both silicon and InGaAs. This technology has enabled terrain mapping and foliage penetration systems with exquisite sensitivity and high area coverage rate.

READ MORE

A scalable fabrication process for liquid crystal-based uncooled thermal imagers

Published in:
J. Microelectromech. Syst., Vol. 25, No. 3. June 2016, pp. 479-88.

Summary

A novel sensor is being developed for a new uncooled imager technology that is scalable to large formats (tens of megapixels), which is greater than what is achieved by commercial microbolometer arrays. In this novel sensor, a liquid-crystal transducer is used to change a long-wavelength infrared scene into a visible image that can be detected using a conventional visible imager. This approach has the potential for making a more flexible thermal sensor that can be optimized for a variety of applications. In this paper, we describe the microfabrication processes required to create an array of sealed thermally isolated micro-cavities filled with liquid crystals to be used for an uncooled thermal imager. Experimental results from the fabricated arrays will also be discussed.
READ LESS

Summary

A novel sensor is being developed for a new uncooled imager technology that is scalable to large formats (tens of megapixels), which is greater than what is achieved by commercial microbolometer arrays. In this novel sensor, a liquid-crystal transducer is used to change a long-wavelength infrared scene into a visible...

READ MORE

Multitap RF canceller for in-band full-duplex wireless communications

Published in:
IEEE Wirel. Commun., Vol. 15, No. 6, June 2016, pp. 4321-34.

Summary

In-band full-duplex wireless communications are challenging because they require the mitigation of self-interference caused by the co-located transmitter to operate effectively. This paper presents a novel tapped delay line RF canceller architecture with multiple non-uniform pre-weighted taps to improve system isolation by cancelling both the direct antenna coupling as well as multipath effects that comprise a typical interference channel. A four-tap canceller prototype was measured over several different operating conditions, and was found to provide an average of 30 dB signal cancellation over a 30 MHz bandwidth centered at 2.45 GHz in isolated scenarios. When combined with an omni-directional high-isolation antenna, the canceller improved the overall analog isolation to 90 dB for these cases. In an indoor setting, the canceller suppressed a +30 dBm OFDM signal by 22 dB over a 20 MHz bandwidth centered at 2.45 GHz, and produced 78 dB of total analog isolation. This complete evaluation demonstrates not only the performance limitations of an optimized multitap RF canceller, but also establishes the amount of analog interference suppression that can be expected for the different environments considered.
READ LESS

Summary

In-band full-duplex wireless communications are challenging because they require the mitigation of self-interference caused by the co-located transmitter to operate effectively. This paper presents a novel tapped delay line RF canceller architecture with multiple non-uniform pre-weighted taps to improve system isolation by cancelling both the direct antenna coupling as well...

READ MORE

Operational assessment of keyword search on oral history

Published in:
10th Language Resources and Evaluation Conf., LREC 2016, 23-8 May 2016.

Summary

This project assesses the resources necessary to make oral history searchable by means of automatic speech recognition (ASR). There are many inherent challenges in applying ASR to conversational speech: smaller training set sizes and varying demographics, among others. We assess the impact of dataset size, word error rate and term-weighted value on human search capability through an information retrieval task on Mechanical Turk. We use English oral history data collected by StoryCorps, a national organization that provides all people with the opportunity to record, share and preserve their stories, and control for a variety of demographics including age, gender, birthplace, and dialect on four different training set sizes. We show comparable search performance using a standard speech recognition system as with hand-transcribed data, which is promising for increased accessibility of conversational speech and oral history archives.
READ LESS

Summary

This project assesses the resources necessary to make oral history searchable by means of automatic speech recognition (ASR). There are many inherent challenges in applying ASR to conversational speech: smaller training set sizes and varying demographics, among others. We assess the impact of dataset size, word error rate and term-weighted...

READ MORE

A fun and engaging interface for crowdsourcing named entities

Published in:
10th Language Resources and Evaluation Conf., LREC 2016, 23-28 May 2016.

Summary

There are many current problems in natural language processing that are best solved by training algorithms on an annotated in-language, in-domain corpus. The more representative the training corpus is of the test data, the better the algorithm will perform, but also the less likely it is that such a corpus has already been annotated. Annotating corpora for natural language processing tasks is typically a time consuming and expensive process. In this paper, we provide a case study in using crowd sourcing to curate an in-domain corpus for named entity recognition, a common problem in natural language processing. In particular, we present our use of fun, engaging user interfaces as a way to entice workers to partake in our crowd sourcing task while avoiding inflating our payments in a way that would attract more mercenary workers than conscientious ones. Additionally, we provide a survey of alternate interfaces for collecting annotations of named entities and compare our approach to those systems.
READ LESS

Summary

There are many current problems in natural language processing that are best solved by training algorithms on an annotated in-language, in-domain corpus. The more representative the training corpus is of the test data, the better the algorithm will perform, but also the less likely it is that such a corpus...

READ MORE

Enforced sparse non-negative matrix factorization

Published in:
30th IEEE Int. Parallel and Distributed Processing Symp., IPDPS 2016, 23-27 May 2016.

Summary

Non-negative matrix factorization (NMF) is a dimensionality reduction algorithm for data that can be represented as an undirected bipartite graph. It has become a common method for generating topic models of text data because it is known to produce good results, despite its relative simplicity of implementation and ease of computation. One challenge with applying the NMF to large datasets is that intermediate matrix products often become dense, thus stressing the memory and compute elements of the underlying system. In this article, we investigate a simple but powerful modification of the alternating least squares method of determining the NMF of a sparse matrix that enforces the generation of sparse intermediate and output matrices. This method enables the application of NMF to large datasets through improved memory and compute performance. Further, we demonstrate, empirically, that this method of enforcing sparsity in the NMF either preserves or improves both the accuracy of the resulting topic model and the convergence rate of the underlying algorithm.
READ LESS

Summary

Non-negative matrix factorization (NMF) is a dimensionality reduction algorithm for data that can be represented as an undirected bipartite graph. It has become a common method for generating topic models of text data because it is known to produce good results, despite its relative simplicity of implementation and ease of...

READ MORE

LLMapReduce: multi-level map-reduce for high performance data analysis

Summary

The map-reduce parallel programming model has become extremely popular in the big data community. Many big data workloads can benefit from the enhanced performance offered by supercomputers. LLMapReduce provides the familiar map-reduce parallel programming model to big data users running on a supercomputer. LLMapReduce dramatically simplifies map-reduce programming by providing simple parallel programming capability in one line of code. LLMapReduce supports all programming languages and many schedulers. LLMapReduce can work with any application without the need to modify the application. Furthermore, LLMapReduce can overcome scaling limits in the map-reduce parallel programming model via options that allow the user to switch to the more efficient single-program-multiple-data (SPMD) parallel programming model. These features allow users to reduce the computational overhead by more than 10x compared to standard map-reduce for certain applications. LLMapReduce is widely used by hundreds of users at MIT. Currently LLMapReduce works with several schedulers such as SLURM, Grid Engine and LSF.
READ LESS

Summary

The map-reduce parallel programming model has become extremely popular in the big data community. Many big data workloads can benefit from the enhanced performance offered by supercomputers. LLMapReduce provides the familiar map-reduce parallel programming model to big data users running on a supercomputer. LLMapReduce dramatically simplifies map-reduce programming by providing...

READ MORE

Generating a multiple-prerequisite attack graph

A data-stream classification system for investigating terrorist threats

Published in:
Proc. SPIE 9851, Next-Generation Analyst IV, 98510L (May 12, 2016); doi:10.1117/12.2224104.

Summary

The role of cyber forensics in criminal investigations has greatly increased in recent years due to the wealth of data that is collected and available to investigators. Physical forensics has also experienced a data volume and fidelity revolution due to advances in methods for DNA and trace evidence analysis. Key to extracting insight is the ability to correlate across multi-modal data, which depends critically on identifying a touch-point connecting the separate data streams. Separate data sources may be connected because they refer to the same individual, entity or event. In this paper we present a data source classification system tailored to facilitate the investigation of potential terrorist activity. This taxonomy is structured to illuminate the defining characteristics of a particular terrorist effort and designed to guide reporting to decision makers that is complete, concise, and evidence-based. The classification system has been validated and empirically utilized in the forensic analysis of a simulated terrorist activity. Next-generation analysts can use this schema to label and correlate across existing data streams, assess which critical information may be missing from the data, and identify options for collecting additional data streams to fill information gaps.
READ LESS

Summary

The role of cyber forensics in criminal investigations has greatly increased in recent years due to the wealth of data that is collected and available to investigators. Physical forensics has also experienced a data volume and fidelity revolution due to advances in methods for DNA and trace evidence analysis. Key...

READ MORE