Publications

Refine Results

(Filters Applied) Clear All

Directly-deposited blocking filters for high-performance silicon x-ray detectors

Published in:
SPIE, Vol. 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, July 2016, 99054C.

Summary

Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E < 1 keV) X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.
READ LESS

Summary

Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other...

READ MORE

Resonance fluorescence from an artificial atom in squeezed vacuum

Published in:
Phys. Rev. X, Vol. 6, No. 3, July-September 2016, 031004.

Summary

We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. 58, 2539 (1987)], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.
READ LESS

Summary

We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing...

READ MORE

Balancing security and performance for agility in dynamic threat environments

Published in:
46th IEEE/IFIP Int. Conf. on Dependable Systems and Networks, DSN 2016, 28 June - 1 July 2016.

Summary

In cyber security, achieving the desired balance between system security and system performance in dynamic threat environments is a long-standing open challenge for cyber defenders. Typically an increase in system security comes at the price of decreased system performance, and vice versa, easily resulting in systems that are misaligned to operator specified requirements for system security and performance as the threat environment evolves. We develop an online, reinforcement learning based methodology to automatically discover and maintain desired operating postures in security-performance space even as the threat environment changes. We demonstrate the utility of our approach and discover parameters enabling an agile response to a dynamic adversary in a simulated security game involving prototype cyber moving target defenses.
READ LESS

Summary

In cyber security, achieving the desired balance between system security and system performance in dynamic threat environments is a long-standing open challenge for cyber defenders. Typically an increase in system security comes at the price of decreased system performance, and vice versa, easily resulting in systems that are misaligned to...

READ MORE

Multi-channel agile comb generator for antenna radiation pattern measurements

Published in:
IEEE Int. Symp. Antennas and Propagation (APSURSI), 26 June - 1 July 2016.

Summary

Antenna radiation patterns are typically measured using network analyzers, which are both expensive and physically large in size. These drawbacks can limit this test equipment's usage in universities that cannot afford to make such a purchase, as well as within applications that require mobile antenna measurements. An alternative approach is to combine a low-cost receiver with a flexible signal source. This paper presents the design of a tunable comb generator prototype that is capable of outputting frequencies up to 4 GHz. The compact nature of this source along with its potential to be dynamically reconfigured yields a device that can be used to measure antenna patterns for many different applications.
READ LESS

Summary

Antenna radiation patterns are typically measured using network analyzers, which are both expensive and physically large in size. These drawbacks can limit this test equipment's usage in universities that cannot afford to make such a purchase, as well as within applications that require mobile antenna measurements. An alternative approach is...

READ MORE

Single antenna in-band full-duplex isolation-improvement techniques

Published in:
IEEE Int. Symp. Antennas and Propagation (APSURSI), 26 June - 1 July 2016.

Summary

Many in-band full-duplex wireless systems transmit and receive on a single antenna to minimize redundancy and maintain compact form factors. For effective operation, all of these systems need to maximize transmit-to-receive isolation, which is limited by non-ideal antenna matching and non-zero circulator leakage. Several isolation-improvement techniques are investigated in this paper, and illustrate how RF components can be used to minimize the consequential self-interference of these systems. Two unique cancellation schemes were validated, and the isolation of a single-antenna transceiver was measured to improve by 15 and 33 dB over the 100 MHz bandwidth centered at 2.45 GHz.
READ LESS

Summary

Many in-band full-duplex wireless systems transmit and receive on a single antenna to minimize redundancy and maintain compact form factors. For effective operation, all of these systems need to maximize transmit-to-receive isolation, which is limited by non-ideal antenna matching and non-zero circulator leakage. Several isolation-improvement techniques are investigated in this...

READ MORE

Switched antenna array tile for real-time microwave imaging aperture

Published in:
IEEE Int. Symp. Antennas and Propagation (APSURSI), 26 June - 1 July 2016.

Summary

A switched array tile which is part of a large aperture for near-field microwave imaging is presented. The tile is based on the Boundary Array (BA), a sparse array topology for hardware efficient realization of imaging apertures. The larger array formed with the tile samples a scene with no redundancy, and is compatible with fast imaging techniques. Details on the design and realization of the tile are presented, as well as experimental images formed with a tile prototype.
READ LESS

Summary

A switched array tile which is part of a large aperture for near-field microwave imaging is presented. The tile is based on the Boundary Array (BA), a sparse array topology for hardware efficient realization of imaging apertures. The larger array formed with the tile samples a scene with no redundancy...

READ MORE

Collaborative Data Analysis and Discovery for Cyber Security

Published in:
Proceedings of the 12th Symposium on Usable Privacy and Security (SOUPS 2016)

Summary

In this paper, we present the Cyber Analyst Real-Time Integrated Notebook Application (CARINA). CARINA is a collaborative investigation system that aids in decision making by co-locating the analysis environment with centralized cyber data sources, and providing next generation analysts with increased visibility to the work of others.
READ LESS

Summary

In this paper, we present the Cyber Analyst Real-Time Integrated Notebook Application (CARINA). CARINA is a collaborative investigation system that aids in decision making by co-locating the analysis environment with centralized cyber data sources, and providing next generation analysts with increased visibility to the work of others.

READ MORE

Channel compensation for speaker recognition using MAP adapted PLDA and denoising DNNs

Published in:
Odyssey 2016, The Speaker and Language Recognition Workshop, 21-24 June 2016.

Summary

Over several decades, speaker recognition performance has steadily improved for applications using telephone speech. A big part of this improvement has been the availability of large quantities of speaker-labeled data from telephone recordings. For new data applications, such as audio from room microphones, we would like to effectively use existing telephone data to build systems with high accuracy while maintaining good performance on existing telephone tasks. In this paper we compare and combine approaches to compensate models parameters and features for this purpose. For model adaptation we explore MAP adaptation of hyper-parameters and for feature compensation we examine the use of denoising DNNs. On a multi-room, multi-microphone speaker recognition experiment we show a reduction of 61% in EER with a combination of these approaches while slightly improving performance on telephone data.
READ LESS

Summary

Over several decades, speaker recognition performance has steadily improved for applications using telephone speech. A big part of this improvement has been the availability of large quantities of speaker-labeled data from telephone recordings. For new data applications, such as audio from room microphones, we would like to effectively use existing...

READ MORE

The MITLL NIST LRE 2015 Language Recognition System

Summary

In this paper we describe the most recent MIT Lincoln Laboratory language recognition system developed for the NIST 2015 Language Recognition Evaluation (LRE). The submission features a fusion of five core classifiers, with most systems developed in the context of an i-vector framework. The 2015 evaluation presented new paradigms. First, the evaluation included fixed training and open training tracks for the first time; second, language classification performance was measured across 6 language clusters using 20 language classes instead of an N-way language task; and third, performance was measured across a nominal 3-30 second range. Results are presented for the overall performance across the six language clusters for both the fixed and open training tasks. On the 6-cluster metric the Lincoln system achieved overall costs of 0.173 and 0.168 for the fixed and open tasks respectively.
READ LESS

Summary

In this paper we describe the most recent MIT Lincoln Laboratory language recognition system developed for the NIST 2015 Language Recognition Evaluation (LRE). The submission features a fusion of five core classifiers, with most systems developed in the context of an i-vector framework. The 2015 evaluation presented new paradigms. First...

READ MORE

A vocal modulation model with application to predicting depression severity

Published in:
13th IEEE Int. Conf. on Wearable and Implantable Body Sensor Networks, BSN 2016, 14-17 June 2016.

Summary

Speech provides a potential simple and noninvasive "on-body" means to identify and monitor neurological diseases. Here we develop a model for a class of vocal biomarkers exploiting modulations in speech, focusing on Major Depressive Disorder (MDD) as an application area. Two model components contribute to the envelope of the speech waveform: amplitude modulation (AM) from respiratory muscles, and AM from interaction between vocal tract resonances (formants) and frequency modulation in vocal fold harmonics. Based on the model framework, we test three methods to extract envelopes capturing these modulations of the third formant for synthesized sustained vowels. Using subsequent modulation features derived from the model, we predict MDD severity scores with a Gaussian Mixture Model. Performing global optimization over classifier parameters and number of principal components, we evaluate performance of the features by examining the root-mean-squared error (RMSE), mean absolute error (MAE), and Spearman correlation between the actual and predicted MDD scores. We achieved RMSE and MAE values 10.32 and 8.46, respectively (Spearman correlation=0.487, p<0.001), relative to a baseline RMSE of 11.86 and MAE of 10.05, obtained by predicting the mean MDD severity score. Ultimately, our model provides a framework for detecting and monitoring vocal modulations that could also be applied to other neurological diseases.
READ LESS

Summary

Speech provides a potential simple and noninvasive "on-body" means to identify and monitor neurological diseases. Here we develop a model for a class of vocal biomarkers exploiting modulations in speech, focusing on Major Depressive Disorder (MDD) as an application area. Two model components contribute to the envelope of the speech...

READ MORE