Publications

Refine Results

(Filters Applied) Clear All

Development of an automated windshear detection system using doppler weather radar

Published in:
Proc. IEEE, Vol. 77, No. 11, November 1989, pp. 1661-1673.

Summary

The US Federal Aviation Administration (FAA) is developing the Terminal Doppler Weather Radar (TDWR) system to determine the location and severity of LAWS (low-altitude windshear) phenomena and other weather hazards (e.g. tornadoes and turbulence) and to provide the pertinent information to real-time air traffic control users. The FAA program for developing and evaluating the TDWR is described, with emphasis on the resolution of key technical issues such as separation of the radar return due to the low-altitude weather phenomena from that caused by various clutter sources and the automatic detection of the phenomena by means of pattern recognition applied to images depicting the weather reflectivity and Doppler shift. These technical issues have been addressed using experimental data obtained using a testbed radar in representative meteorological regimes. The system performance has been assessed using numerous experimental windshear data sets with corresponding 'truth' developed by experienced radar meteorologists from a number of organizations. It is shown that the system provides very reliable detection of strong microbursts in a variety of environments with a gust-front detection capability that supports effective planning of airport runway use.
READ LESS

Summary

The US Federal Aviation Administration (FAA) is developing the Terminal Doppler Weather Radar (TDWR) system to determine the location and severity of LAWS (low-altitude windshear) phenomena and other weather hazards (e.g. tornadoes and turbulence) and to provide the pertinent information to real-time air traffic control users. The FAA program for...

READ MORE

Storm models for end-to-end TDWR signal processing simulation tests

Author:
Published in:
MIT Lincoln Laboratory Report ATC-155

Summary

End-to-end qualification testing of teh Terminal Doppler Weather Radar (TDWR) contractor signal processing system will be accomplished by a signal processing simulation test. Government furnished storm models will be used to provide inputs to the signal processor. The corresponding hazardous weather product results will be compared to hte results determined by the detection algorithm developers. This report examines the role of the end-to-end tests in the context of overall TDWR qualification testing and concludes that the signal waveform/velocity ambiguity resolution should be the principal focus of the signal processing simulation testing. Salient characteristics of the initial pair of storm models (a high reflectivity microburst observed in Huntsville, AL, and a series of low-to-moderate reflectivity microburst storms observed in Denver, CO) are described as well as desirable characteristics of additional storm models to be provided later.
READ LESS

Summary

End-to-end qualification testing of teh Terminal Doppler Weather Radar (TDWR) contractor signal processing system will be accomplished by a signal processing simulation test. Government furnished storm models will be used to provide inputs to the signal processor. The corresponding hazardous weather product results will be compared to hte results determined...

READ MORE

The FAA Terminal Doppler Weather (TDWR) Program

Published in:
Proc. Third Int. Conf. on the Aviation Weather Systems, 30 January - 3 February 1989, pp. 414-419.

Summary

The Federal Aviation Administration (FAA) initiated the Terminal Doppler Weather Radar (TDWR) program in the mid-1980s in response to overwhelming scientific evidence that low-altitude wind shear had caused a number of major air-carrier accidents. The program is designed to develop a reliable automated system for detecting low-altitude wind shear in the terminal area and providing warnings that will help pilots successfully avoid it on approach and departure. Wind shear has caused more U.S. air-carrier fatalities than any other weather hazard. A 1983 National Research Council (NRC) study (National Research Council, 1983) identified low-altitude wind shear as the cause of 27 aircraft accidents and incidents between 1964 and 1982. A total of 488 people died in seven of these accidents, 112 of them in the 1975 crash of Eastern Flight 66 at New York and 153 in the crash of Pan American Flight 759 at New Orleans in 1982. Since the NRC study was completed, the National Transportation Safety Board (NTSB) has investigated at least three more wind-shear incidents. One of these, the crash of Delta Flight 191 at Dallas/Fort Worth on August 2, 1985, took another 137 lives. Wind shear is not a serious hazard for aircraft enroute between airports at normal cruising altitudes, but low-level wind shear in the terminal area can be deadly for an aircraft on approach or departure. The most hazardous form of wind shear is the microburst, an outflow of air from a small-scale but powerful downward gush of cold, heavy air that can occur beneath a thunderstorm or rain shower or even in rain-free air under a harmless-looking cumulus cloud. As this downdraft reaches the earth's surface, it spreads out horizontally, like a stream of water sprayed straight down on a concrete driveway from a garden hose. An aircraft that flies through a microburst at low altitude first encounters a strong headwind, then a downdraft, and finally a tailwind that produces a sharp reduction in airspeed and a sudden loss of lift. This deadly sequence of events caused the fatal crash at Dallas/Fort Worth in 1985, as well as a number of other serious air-carrier accidents. Wind shear can also be associated with gust fronts, warm and cold fronts, and strong winds near the ground. It is important for pilots to be trained in recovery techniques to use if they are caught in wind shear. But a sudden windspeed change of at least 40 to 50 knots, which is not uncommon in microbursts, presents a serious hazard to jet airliners, and some microbursts simply are non-survivable. The only sure way to survive wind shear in the terminal area is to avoid it. However, flight crews do not have adequate information available today to predict or detect wind shear. The primary goal of the IDWR program is to provide pilots with an objective, quantitative assessment of the wind-shear hazard. The TDWR system also will improve operational efficiency and reduce delays in the terminal area by providing air traffic control supervisors with timely warnings of impending wind shifts resulting from gust fronts.
READ LESS

Summary

The Federal Aviation Administration (FAA) initiated the Terminal Doppler Weather Radar (TDWR) program in the mid-1980s in response to overwhelming scientific evidence that low-altitude wind shear had caused a number of major air-carrier accidents. The program is designed to develop a reliable automated system for detecting low-altitude wind shear in...

READ MORE

Multipath modeling for simulating the performance of the Microwave Landing System

Published in:
Lincoln Laboratory Journal, Vol. 2, No. 3, Fall 1989, pp. 459-474.

Summary

The Microwave Landing System (MLS) will be deployed throughout the world in the 1990s to provide precision guidance to aircraft for approach and landing at airports. At Lincoln Laboratory, we have developed a computer-based simulation that models the performance of MLS and takes into account the multipath effects of buildings, the surrounding terrain, and other aircraft in the vicinity. The simulation has provided useful information about the effects of multipath on MLS performance.
READ LESS

Summary

The Microwave Landing System (MLS) will be deployed throughout the world in the 1990s to provide precision guidance to aircraft for approach and landing at airports. At Lincoln Laboratory, we have developed a computer-based simulation that models the performance of MLS and takes into account the multipath effects of buildings...

READ MORE

Clutter suppression for low altitude wind shear detection by doppler weather radars

Published in:
23rd Conf. on Radar Meteorology, Vol. 1, 22-26 September 1986, pp. 9-13.

Summary

Low altitude wind shear (LAWS) has been recognized as a major cause of commercial airline aircraft accidents in the United States. The FAA is actively conducting the Terminal Doppler Weather Radar (TDWR) program to detect and identify dangerous wind fields at and around airports using Doppler radar techniques. Clutter poses a major challenge to successful operation of such a system due to the need to measure the return from low cross section wind tracers in the presence of close-in clutter from stationary objects. The paper describes the overall LAWS detection scenario with particular emphasis on microburst and gust front detection before presenting detailed experimental and analytical results on the suppression of ground clutter using a combination of: 1) subclutter visibility in excess of 50 dB by the use of high pass digital filters with narrow stopbands, and 2) interclutter visibility (ICV) algorithms which utilize the spatially distributed nature of the weather phenomena being measured, and 3) pencil beam antennas with readily achievable sidelobes.
READ LESS

Summary

Low altitude wind shear (LAWS) has been recognized as a major cause of commercial airline aircraft accidents in the United States. The FAA is actively conducting the Terminal Doppler Weather Radar (TDWR) program to detect and identify dangerous wind fields at and around airports using Doppler radar techniques. Clutter poses...

READ MORE

The Cooperative Huntsville Meteorological Experiment (COHMEX)

Published in:
Bull. Am. Meteorol. Soc., Vol. 67, No. 4, April 1986, pp. 417-419.

Summary

A unique meteorological field experiment (COHMEX) is scheduled to be conducted from March-July 1986 with a core period of operation in June and July. It is taking place in the region covering northern Alabama and the adjoining portion of central Tennessee. The experiment's uniqueness derives from the fact that it is actually composed of three distinct experiments sponsored by National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the Federal Aviation Administration (FAA), respectively, with extensive sharing of resources and data. A diagram of the experiment's domain with observational coverage is included in Fig. 1.
READ LESS

Summary

A unique meteorological field experiment (COHMEX) is scheduled to be conducted from March-July 1986 with a core period of operation in June and July. It is taking place in the region covering northern Alabama and the adjoining portion of central Tennessee. The experiment's uniqueness derives from the fact that it...

READ MORE

The FAA/MIT Lincoln Laboratory Doppler Weather Radar Program

Published in:
Proc. Second Int. Conf. on the Aviation Weather Systems, 19-21 June 1985, pp. 76-79.

Summary

Adverse weather is the leading cause of aircraft accidents in the United States. In order to improve hazardous weather detection and warning capability for aviation, the Federal Aviation Administration (FAA) is pursuing a two part Doppler weather radar program. The first part consists of a joint program with the National Weather Service (NWS) and United States Air Force Weather Service (AWS) is to develop and install the Next Generation Weather Radar (NEXRAD). The NEXRAD Systems will meet the FAA enroutw hazardous weather detection requirements and will replace the existing obsolete NWS and AWS weather radars. The second part of the FAA program is the development of a Terminal Doppler Weather Radar (TDWR), which could be procured and installed at major airports to detect weather hazards to terminal aviation operations. The TDWR couls be either a derivative of NEXRAD or a separate radar system. In order to support both of these efforts, the FAA contracted with M.I.T. Lincoln Laboratory to develop and fabricate a NEXRAD-like transportable weather radar support facility. This facility along with a second Doppler radar and a network of meteorological measurement stations are installed near Memphis, Tennessee. These facilities will be used to validate and refine scanning strategies, data processing techniques, and weather detection algorithms. The utility of weather radar products for air traffic control (especially for pilots and controllers) will be evaluated.
READ LESS

Summary

Adverse weather is the leading cause of aircraft accidents in the United States. In order to improve hazardous weather detection and warning capability for aviation, the Federal Aviation Administration (FAA) is pursuing a two part Doppler weather radar program. The first part consists of a joint program with the National...

READ MORE

Ground clutter cancellation for the NEXRAD system

Author:
Published in:
MIT Lincoln Laboratory Report ATC-122

Summary

Returns from the ground and associated obstacles surroudning a NEXRAD weather radar (i.e., ground clutter) will contaminate the estimates of weather echo spectral features (e.g., reflectivity, mean velocity, and spectral width). The ground clutter returns are particularly large at low elevation angles and close range (e.g., within 40 km). Additionally, the pulse repetition frequency (PRF) values necessary to obtain the desired weather Doppler features result in ground clutter contamination at ranges that are multiples of the unambiguous range interval (e.g., 115-175 km for a typical NEXRAD). Fortunately, the groung clutter power spectrum is localized around zero velocity so that one can reduce its effect by appropriate Doppler signal processing. Automatic reduction of clutter contamination is essential if NEXRAD is to achieve the desired automatic weather product generation capability. The results of an analytical/experimental study oreinted toward development of a clutter cancellation specification and assiciated quality assurance tests for the NEXRAD system are described.
READ LESS

Summary

Returns from the ground and associated obstacles surroudning a NEXRAD weather radar (i.e., ground clutter) will contaminate the estimates of weather echo spectral features (e.g., reflectivity, mean velocity, and spectral width). The ground clutter returns are particularly large at low elevation angles and close range (e.g., within 40 km). Additionally...

READ MORE

FAA weather surveillance requirements in the context on NEXRAD

Author:
Published in:
MIT Lincoln Laboratory Report ATC-112

Summary

The Federal Aviation Administration (FAA), National Weather Service and Air Force Weather Service are currently engaged in a program to develop a next generation of weather radars (NEXRAD) capable of satisfying (to the greatest extent possible) the common weather information needs of these agencies. This report identifies the unique FAA weather radar surveillance requirements and examines the technical issues that arise in attempting to meet these requirements with the NEXRAD strawman radar sensors and siting. Current air traffic control (ATC) weather data usage and statistics of aviation weather hazards and system efficiency are used to prioritize products needed for ATC. The strawman NEXRAD capability is then reviewed in the context of the identified weather products and factors such as: (1) effects of front end noise and weather return statistics (2) resolution and low altitude coverage constraints (3) the clutter environment associated with various siting options, and (4) data quality required for real time automated display of hazardous weather regions to ATC controllers. It is concluded that significant problems will arise in attempting to simultaneously provide terminal and en route weather surveillance by a single radar as envisioned in the NEXRAD strawman. An analytical/experimental research and development program is described to resolve the identified technical uncertainties in the NEXRAD strawman design for FAA applications. The suggested research and development program includes an operationally oriented interactive data gathering program to evaluate weather products at an ARTCC and TRACON using existing pencil beam S-band radars (e.g., similar to that at MIT) to be followed by similar evaluations in other key geographical areas (e.g., the southeast) using a transportable testbed. Both radar systems would incorporate special features to minimize the likelihood of false targets (e.g., due to obscuration and/or clutter) as well as automated display and short term prediction of hazardous weather regions for use by ATC controllers.
READ LESS

Summary

The Federal Aviation Administration (FAA), National Weather Service and Air Force Weather Service are currently engaged in a program to develop a next generation of weather radars (NEXRAD) capable of satisfying (to the greatest extent possible) the common weather information needs of these agencies. This report identifies the unique FAA...

READ MORE

L-Band DME multipath environment in the microwave landing system (MLS) approach and landing region

Author:
Published in:
MIT Lincoln Laboratory Report ATC-116

Summary

The multipath environment in the approach and landing region represents an important factor in the optimization and ultimate performance of the Microwave Landing System (MLS) Precision Distance Measuring Equipment (DME/P). Various types of multipath are assessed in the context of the proposed DME/P implementation error characteristics to ascertain the principal challenges. It is shown (analytically and experimentally) that specular reflections from buildings represent a significant challenge, particularly at low altitudes (e.g., category II decision height and below) where terrain lobing can cause the effective multipath levels to exceed the effective direct signal level. However, the time delay discrimination capabilities of the proposed DME/P should effectively eliminate the bulk of such multipath. Limited S-band (3 GHz) measurements of diffuse reflections from nominally flat terrain indicated very low levels. However, specular reflections from bare, hilly terrain may present problems in some cases.
READ LESS

Summary

The multipath environment in the approach and landing region represents an important factor in the optimization and ultimate performance of the Microwave Landing System (MLS) Precision Distance Measuring Equipment (DME/P). Various types of multipath are assessed in the context of the proposed DME/P implementation error characteristics to ascertain the principal...

READ MORE