Publications
A deep learning-based velocity dealiasing algorithm derived from the WSR-88D open radar product generator
Summary
Summary
Radial velocity estimates provided by Doppler weather radar are critical measurements used by operational forecasters for the detection and monitoring of life-impacting storms. The sampling methods used to produce these measurements are inherently susceptible to aliasing, which produces ambiguous velocity values in regions with high winds and needs to be...
Detecting pathogen exposure during the non-symptomatic incubation period using physiological data: proof of concept in non-human primates
Summary
Summary
Background and Objectives: Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. First...
GraphChallenge.org sparse deep neural network performance [e-print]
Summary
Summary
The MIT/IEEE/Amazon GraphChallenge.org encourages community approaches to developing new solutions for analyzing graphs and sparse data. Sparse AI analytics present unique scalability difficulties. The Sparse Deep Neural Network (DNN) Challenge draws upon prior challenges from machine learning, high performance computing, and visual analytics to create a challenge that is reflective...
GraphChallenge.org triangle counting performance [e-print]
Summary
Summary
The rise of graph analytic systems has created a need for new ways to measure and compare the capabilities of graph processing systems. The MIT/Amazon/IEEE Graph Challenge has been developed to provide a well-defined community venue for stimulating research and highlighting innovations in graph analysis software, hardware, algorithms, and systems...
75,000,000,000 streaming inserts/second using hierarchical hypersparse GraphBLAS matrices
Summary
Summary
The SuiteSparse GraphBLAS C-library implements high performance hypersparse matrices with bindings to a variety of languages (Python, Julia, and Matlab/Octave). GraphBLAS provides a lightweight in-memory database implementation of hypersparse matrices that are ideal for analyzing many types of network data, while providing rigorous mathematical guarantees, such as linearity. Streaming updates...
AI data wrangling with associative arrays [e-print]
Summary
Summary
The AI revolution is data driven. AI "data wrangling" is the process by which unusable data is transformed to support AI algorithm development (training) and deployment (inference). Significant time is devoted to translating diverse data representations supporting the many query and analysis steps found in an AI pipeline. Rigorous mathematical...
Cultivating professional technical skills and understanding through hands-on online learning experiences
Summary
Summary
Life-long learning is necessary for all professions because the technologies, tools and skills required for success over the course of a career expand and change. Professionals in science, technology, engineering and mathematics (STEM) fields face particular challenges as new multi-disciplinary methods, e.g. Machine Learning and Artificial Intelligence, mature to replace...
Optimizing the visualization pipeline of a 3-D monitoring and management system
Summary
Summary
Monitoring and managing High Performance Computing (HPC) systems and environments generate an ever growing amount of data. Making sense of this data and generating a platform where the data can be visualized for system administrators and management to proactively identify system failures or understand the state of the system requires...
Hypersparse neural network analysis of large-scale internet traffic
Summary
Summary
The Internet is transforming our society, necessitating a quantitative understanding of Internet traffic. Our team collects and curates the largest publicly available Internet traffic data containing 50 billion packets. Utilizing a novel hypersparse neural network analysis of "video" streams of this traffic using 10,000 processors in the MIT SuperCloud reveals...
Survey and benchmarking of machine learning accelerators
Summary
Summary
Advances in multicore processors and accelerators have opened the flood gates to greater exploration and application of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore's Law, have prompted an explosion of processors and accelerators that promise even greater computational and...