Publications

Refine Results

(Filters Applied) Clear All

Identification and detection of human trafficking using language models

Author:
Published in:
European Intelligence and Security Informatics Conf., EISIC, 26-27 November 2019.

Summary

In this paper, we present a novel language model-based method for detecting both human trafficking ads and trafficking indicators. The proposed system leverages language models to learn language structures in adult service ads, automatically select a list of keyword features, and train a machine learning model to detect human trafficking ads. The method is interpretable and adaptable to changing keywords used by traffickers. We apply this method to the Trafficking-10k dataset and show that it achieves better results than the previous models that leverage both ad text and images for detection. Furthermore, we demonstrate that our system can be successfully applied to detect suspected human trafficking organizations and rank these organizations based on their risk scores. This method provides a powerful new capability for law enforcement to rapidly identify ads and organizations that are suspected of human trafficking and allow more proactive policing using data.
READ LESS

Summary

In this paper, we present a novel language model-based method for detecting both human trafficking ads and trafficking indicators. The proposed system leverages language models to learn language structures in adult service ads, automatically select a list of keyword features, and train a machine learning model to detect human trafficking...

READ MORE

Characterization of disinformation networks using graph embeddings and opinion mining

Published in:
2019 European Intelligence and Security Informatics Conference, EISIC, 26-27 November 2019.

Summary

Global social media networks' omnipresent access, real time responsiveness and ability to connect with and influence people have been responsible for these networks' sweeping growth. However, as an unintended consequence, these defining characteristics helped create a powerful new technology for spread of propaganda and false information. We present a novel approach for characterizing disinformation networks on social media and distinguishing between different network roles using graph embeddings and hierarchical clustering. In addition, using topic filtering, we correlate the node characterization results with proxy opinion estimates.We plan to study opinion dynamics using signal processing on graphs approaches using longer-timescale social media datasets with the goal to model and infer influence among users in social media networks.
READ LESS

Summary

Global social media networks' omnipresent access, real time responsiveness and ability to connect with and influence people have been responsible for these networks' sweeping growth. However, as an unintended consequence, these defining characteristics helped create a powerful new technology for spread of propaganda and false information. We present a novel...

READ MORE

FirmFuzz: automated IOT firmware introspection and analysis

Published in:
2nd Workshop on the Internet of Things Security and Privacy, IoT S&P '19, 15 November 2019.

Summary

While the number of IoT devices grows at an exhilarating pace their security remains stagnant. Imposing secure coding standards across all vendors is infeasible. Testing individual devices allows an analyst to evaluate their security post deployment. Any discovered vulnerabilities can then be disclosed to the vendors in order to assist them in securing their products. The search for vulnerabilities should ideally be automated for efficiency and furthermore be device-independent for scalability. We present FirmFuzz, an automated device-independent emulation and dynamic analysis framework for Linux-based firmware images. It employs a greybox-based generational fuzzing approach coupled with static analysis and system introspection to provide targeted and deterministic bug discovery within a firmware image. We evaluate FirmFuzz by emulating and dynamically analyzing 32 images (from 27 unique devices) with a network accessible from the host performing the emulation. During testing, FirmFuzz discovered seven previously undisclosed vulnerabilities across six different devices: two IP cameras and four routers. So far, 4 CVE's have been assigned.
READ LESS

Summary

While the number of IoT devices grows at an exhilarating pace their security remains stagnant. Imposing secure coding standards across all vendors is infeasible. Testing individual devices allows an analyst to evaluate their security post deployment. Any discovered vulnerabilities can then be disclosed to the vendors in order to assist...

READ MORE

On-demand forensic video analytics for large-scale surveillance systems

Published in:
2019 IEEE Intl. Symp. on Technologies for Homeland Security, 5-6 November 2019.

Summary

This work presents FOVEA, an add-on suite of analytic tools for the forensic review of video in large-scale surveillance systems. While significant investment has been made toward improving camera coverage and quality, the burden on video operators for reviewing and extracting useful information from the video has only increased. Daily investigation tasks (such as searching through video, investigating abandoned objects, or piecing together information from multiple cameras) still require a significant amount of manual review by video operators. In contrast to other tools which require exporting video data or otherwise curating the video collection before analysis, FOVEA is designed to integrate with existing surveillance systems. Tools can be applied to any video stream in an on-demand fashion without additional hardware. This paper details the technical approach, underlying algorithms, and effects on video operator performance.
READ LESS

Summary

This work presents FOVEA, an add-on suite of analytic tools for the forensic review of video in large-scale surveillance systems. While significant investment has been made toward improving camera coverage and quality, the burden on video operators for reviewing and extracting useful information from the video has only increased. Daily...

READ MORE

Cultivating professional technical skills and understanding through hands-on online learning experiences

Published in:
2019 IEEE Learning with MOOCS, LWMOOCS, 23-25 October 2019.

Summary

Life-long learning is necessary for all professions because the technologies, tools and skills required for success over the course of a career expand and change. Professionals in science, technology, engineering and mathematics (STEM) fields face particular challenges as new multi-disciplinary methods, e.g. Machine Learning and Artificial Intelligence, mature to replace those learned in undergraduate or graduate programs. Traditionally, industry, professional societies and university programs have provided professional development. While these provide opportunities to develop deeper understanding in STEM specialties and stay current with new techniques, the constraints on formal classes and workshops preclude the possibility of Just-In-Time Mastery Learning, particularly for new domains. The MIT Lincoln Laboratory Supercomputing Center (LLSC) and MIT Supercloud teams have developed online course offerings specifically designed to provide a way for adult learners to build their own educational path based on their immediate needs, problems and schedules. To satisfy adult learners, the courses are formulated as a series of challenges and strategies. Using this perspective, the courses incorporate targeted theory supported by hands-on practice. The focus of this paper is the design of Mastery, Just-in-Time MOOC courses that address the full space of hands-on learning requirements, from digital to analog. The discussion centers on the design of project-based exercises for professional technical education courses. The case studies highlight examples from courses that incorporate practice ranging from the construction of a small radar used for real world data collection and processing to the development of high performance computing applications.
READ LESS

Summary

Life-long learning is necessary for all professions because the technologies, tools and skills required for success over the course of a career expand and change. Professionals in science, technology, engineering and mathematics (STEM) fields face particular challenges as new multi-disciplinary methods, e.g. Machine Learning and Artificial Intelligence, mature to replace...

READ MORE

Investigation of the relationship of vocal, eye-tracking, and fMRI ROI time-series measures with preclinical mild traumatic brain injury

Summary

In this work, we are examining correlations between vocal articulatory features, ocular smooth pursuit measures, and features from the fMRI BOLD response in regions of interest (ROI) time series in a high school athlete population susceptible to repeated head impact within a sports season. Initial results have indicated relationships between vocal features and brain ROIs that may show which components of the neural speech networks effected are effected by preclinical mild traumatic brain injury (mTBI). The data used for this study was collected by Purdue University on 32 high school athletes over the entirety of a sports season (Helfer, et al., 2014), and includes fMRI measurements made pre-season, in-season, and postseason. The athletes are 25 male football players and 7 female soccer players. The Immediate Post-Concussion Assessment and Cognitive Testing suite (ImPACT) was used as a means of assessing cognitive performance (Broglio, Ferrara, Macciocchi, Baumgartner, & Elliott, 2007). The test is made up of six sections, which measure verbal memory, visual memory, visual motor speed, reaction time, impulse control, and a total symptom composite. Using each test, a threshold is set for a change in cognitive performance. The threshold for each test is defined as a decline from baseline that exceeds one standard deviation, where the standard deviation is computed over the change from baseline across all subjects’ test scores. Speech features were extracted from audio recordings of the Grandfather Passage, which provides a standardized and phonetically balanced sample of speech. Oculomotor testing included two experimental conditions. In the smooth pursuit condition, a single target moving circularly, at constant speed. In the saccade condition, a target was jumped between one of three location along the horizontal midline of the screen. In both trial types, subjects visually tracked the targets during the trials, which lasted for one minute. The fMRI features are derived from the bold time-series data from resting state fMRI scans of the subjects. The pre-processing of the resting state fMRI and accompanying structural MRI data (for Atlas registration) was performed with the toolkit CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012). Functional connectivity was generated using cortical and sub-cortical atlas registrations. This investigation will explores correlations between these three modalities and a cognitive performance assessment.
READ LESS

Summary

In this work, we are examining correlations between vocal articulatory features, ocular smooth pursuit measures, and features from the fMRI BOLD response in regions of interest (ROI) time series in a high school athlete population susceptible to repeated head impact within a sports season. Initial results have indicated relationships between...

READ MORE

Analog coupled oscillator based weighted Ising machine

Summary

We report on an analog computing system with coupled non-linear oscillators which is capable of solving complex combinatorial optimization problems using the weighted Ising model. The circuit is composed of a fully-connected 4-node LC oscillator network with low-cost electronic components and compatible with traditional integrated circuit technologies. We present the theoretical modeling, experimental characterization, and statistical analysis our system, demonstrating single-run ground state accuracies of 98% on randomized MAX-CUT problem sets with binary weights and 84% with 5-bit weight resolutions. Solutions are obtained within 5 oscillator cycles, and the time-to-solution has been demonstrated to scale directly with oscillator frequency. We present scaling analysis which suggests that large coupled oscillator networks may be used to solve computationally intensive problems faster and more efficiently than conventional algorithms. The proof-of-concept system presented here provides the foundation for realizing such larger scale systems using existing hardware technologies and could pave the way towards an entirely novel computing paradigm.
READ LESS

Summary

We report on an analog computing system with coupled non-linear oscillators which is capable of solving complex combinatorial optimization problems using the weighted Ising model. The circuit is composed of a fully-connected 4-node LC oscillator network with low-cost electronic components and compatible with traditional integrated circuit technologies. We present the...

READ MORE

Multi-Objective Graph Matching via Signal Filtering

Author:
Published in:
IEEE Signal Processing Magazine Special Issue on GSP [submitted]

Summary

In this white paper we propose a new method which exploits tools from graph signal processing to solve the graph matching problem, the problem of estimating the correspondence between the vertex sets of two graphs. We recast the graph matching problem as matching multiple similarity matrices where the similarities are computed between filtered signals unique to eachnode. Using appropriate graph filters, these similarity matrices can emphasize long or short range behavior and the method will implicitly search for similarities between the graphs and at multiple scales. Our method shows substantial improvementsover standard methods which use the raw adjacency matrices, especially in low-information environments.
READ LESS

Summary

In this white paper we propose a new method which exploits tools from graph signal processing to solve the graph matching problem, the problem of estimating the correspondence between the vertex sets of two graphs. We recast the graph matching problem as matching multiple similarity matrices where the similarities are...

READ MORE

An Eye on the Storm: Tracking Power Outages via the Internet of Things

Published in:
Grace Hopper Celebration 2019 [submitted]

Summary

Assessing the extent of power outages in the wake of disasters is a crucial but daunting challenge. We developed a prototype to estimate and map the severity and location of power outages throughout an event by taking advantage of IoT as a non-traditional power-sensing network. We present results used by FEMA and other responders during multiple major hurricanes, such as Harvey, Irma, and Maria.
READ LESS

Summary

Assessing the extent of power outages in the wake of disasters is a crucial but daunting challenge. We developed a prototype to estimate and map the severity and location of power outages throughout an event by taking advantage of IoT as a non-traditional power-sensing network. We present results used by...

READ MORE

Design, simulation, and fabrication of three-dimensional microsystem components using grayscale photolithography

Summary

Grayscale lithography is a widely known but underutilized microfabrication technique for creating three-dimensional (3-D) microstructures in photoresist. One of the hurdles for its widespread use is that developing the grayscale photolithography masks can be time-consuming and costly since it often requires an iterative process, especially for complex geometries. We discuss the use of PROLITH, a lithography simulation tool, to predict 3-D photoresist profiles from grayscale mask designs. Several examples of optical microsystems and microelectromechanical systems where PROLITH was used to validate the mask design prior to implementation in the microfabrication process are presented. In all examples, PROLITH was able to accurately and quantitatively predict resist profiles, which reduced both design time and the number of trial photomasks, effectively reducing the cost of component fabrication.
READ LESS

Summary

Grayscale lithography is a widely known but underutilized microfabrication technique for creating three-dimensional (3-D) microstructures in photoresist. One of the hurdles for its widespread use is that developing the grayscale photolithography masks can be time-consuming and costly since it often requires an iterative process, especially for complex geometries. We discuss...

READ MORE