Publications
Alternative cue and response modalities maintain the Simon effect but impact task performance
Summary
Summary
Inhibitory control, the ability to inhibit impulsive responses and irrelevant stimuli, enables high level functioning and activities of daily living. The Simon task probes inhibition using interfering stimuli, i.e., cues spatially presented on the opposite side of the indicated response; incongruent response times (RT) are slower than congruent RTs. Operational...
Individuals differ in muscle activation patterns during early adaptation to a powered ankle exoskeleton
Summary
Summary
Exoskeletons have the potential to assist users and augment physical ability. To achieve these goals across users, individual variation in muscle activation patterns when using an exoskeleton need to be evaluated. This study examined individual muscle activation patterns during walking with a powered ankle exoskeleton. 60% of the participants were...
AI-enabled, ultrasound-guided handheld robotic device for femoral vascular access
Summary
Summary
Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions...
Relationships between cognitive factors and gait strategy during exoskeleton-augmented walking
Summary
Summary
Individual variation in exoskeleton-augmented gait strategy may arise from differences in cognitive factors, e.g., ability to respond quickly to stimuli or complete tasks under divided attention. Gait strategy is defined as different approaches to achieving gait priorities (e.g., walking without falling) and is observed via changes in gait characteristics like...
Utility of inter-subject transfer learning for wearable-sensor-based joint torque prediction models
Summary
Summary
Generalizability between individuals and groups is often a significant hurdle in model development for human subjects research. In the domain of wearable-sensor-controlled exoskeleton devices, the ability to generalize models across subjects or fine-tune more general models to individual subjects is key to enabling widespread adoption of these technologies. Transfer learning...
Metrics for quantifying cognitive factors that may underlie individual variation in exoskeleton use
Summary
Summary
Individual differences in adaptation to exoskeletons have been observed, but are not well understood. Kinematic, kinetic, and physiologic factors are commonly used to assess these systems. Parameters from experimental psychology and gait literature wereadapted to probe the lower extremity perception-cognition-action loop using measures of reaction times, gait task performance, and...
Detecting pathogen exposure during the non-symptomatic incubation period using physiological data: proof of concept in non-human primates
Summary
Summary
Background and Objectives: Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. First...
A neural network estimation of ankle torques from electromyography and accelerometry
Summary
Summary
Estimations of human joint torques can provide clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Predicting joint torques into the future can also be useful for anticipatory robot control design. In this work, we present a method of mapping joint torque...
Detecting Parkinson's disease from wrist-worn accelerometry in the U.K. Biobank
Summary
Summary
Parkinson's disease (PD) is a chronic movement disorder that produces a variety of characteristic movement abnormalities. The ubiquity of wrist-worn accelerometry suggests a possible sensor modality for early detection of PD symptoms and subsequent tracking of PD symptom severity. As an initial proof of concept for this technological approach, we...
Using oculomotor features to predict changes in optic nerve sheath diameter and ImPACT scores from contact-sport athletes
Summary
Summary
There is mounting evidence linking the cumulative effects of repetitive head impacts to neuro-degenerative conditions. Robust clinical assessment tools to identify mild traumatic brain injuries are needed to assist with timely diagnosis for return-to-field decisions and appropriately guide rehabilitation. The focus of the present study is to investigate the potential...