Publications

Refine Results

(Filters Applied) Clear All

Alternative cue and response modalities maintain the Simon effect but impact task performance

Published in:
Appl. Ergon., Vol. 100, 2022, 103648.

Summary

Inhibitory control, the ability to inhibit impulsive responses and irrelevant stimuli, enables high level functioning and activities of daily living. The Simon task probes inhibition using interfering stimuli, i.e., cues spatially presented on the opposite side of the indicated response; incongruent response times (RT) are slower than congruent RTs. Operational applicability of the Simon task beyond finger/hand manipulations and visual/auditory cues is unclear, but important to consider as new technologies provide tactile cues and require motor responses from the lower extremity (e.g., exoskeletons). In this study, twenty participants completed the Simon task under four conditions, each combination of two cue (visual/tactile) and response (upper/lower-extremity) modalities. RT were significantly longer for incongruent than congruent cues across cue-response pairs. However, alternative cue-response pairs yielded slower RT and decreased accuracy for tactile cues and lower extremity responses. Results support operational usage of the Simon task to probe inhibition using tactile cues and lower-extremity responses relevant for new technologies like exoskeletons and immersive environments.
READ LESS

Summary

Inhibitory control, the ability to inhibit impulsive responses and irrelevant stimuli, enables high level functioning and activities of daily living. The Simon task probes inhibition using interfering stimuli, i.e., cues spatially presented on the opposite side of the indicated response; incongruent response times (RT) are slower than congruent RTs. Operational...

READ MORE

Individuals differ in muscle activation patterns during early adaptation to a powered ankle exoskeleton

Published in:
Applied Ergonomics Volume 98, January 2022, 103593

Summary

Exoskeletons have the potential to assist users and augment physical ability. To achieve these goals across users, individual variation in muscle activation patterns when using an exoskeleton need to be evaluated. This study examined individual muscle activation patterns during walking with a powered ankle exoskeleton. 60% of the participants were observed to reduce medial gastrocnemius activation with exoskeleton powered and increase with the exoskeleton unpowered during stance. 80% of the participants showed a significant increase in tibialis anterior activation upon power addition, with inconsistent changes upon power removal during swing. 60% of the participants that were able to adapt to the system, did not de-adapt after 5 min. Muscle activity patterns differ between individuals in response to the exoskeleton power state, and affected the antagonist muscle behavior during this early adaptation. It is important to understand these different individual behaviors to inform the design of exoskeleton controllers and training protocols.
READ LESS

Summary

Exoskeletons have the potential to assist users and augment physical ability. To achieve these goals across users, individual variation in muscle activation patterns when using an exoskeleton need to be evaluated. This study examined individual muscle activation patterns during walking with a powered ankle exoskeleton. 60% of the participants were...

READ MORE

AI-enabled, ultrasound-guided handheld robotic device for femoral vascular access

Summary

Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions. However, central access is normally performed by highly experienced critical care physicians in a hospital setting. We developed a handheld AI-enabled interventional device, AI-GUIDE (Artificial Intelligence Guided Ultrasound Interventional Device), capable of directing users with no ultrasound or interventional expertise to catheterize a deep blood vessel, with an initial focus on the femoral vein. AI-GUIDE integrates with widely available commercial portable ultrasound systems and guides a user in ultrasound probe localization, venous puncture-point localization, and needle insertion. The system performs vascular puncture robotically and incorporates a preloaded guidewire to facilitate the Seldinger technique of catheter insertion. Results from tissue-mimicking phantom and porcine studies under normotensive and hypotensive conditions provide evidence of the technique's robustness, with key performance metrics in a live porcine model including: a mean time to acquire femoral vein insertion point of 53 plus or minus 36 s (5 users with varying experience, in 20 trials), a total time to insert catheter of 80 plus or minus 30 s (1 user, in 6 trials), and a mean number of 1.1 (normotensive, 39 trials) and 1.3 (hypotensive, 55 trials) needle insertion attempts (1 user). These performance metrics in a porcine model are consistent with those for experienced medical providers performing central vascular access on humans in a hospital.
READ LESS

Summary

Hemorrhage is a leading cause of trauma death, particularly in prehospital environments when evacuation is delayed. Obtaining central vascular access to a deep artery or vein is important for administration of emergency drugs and analgesics, and rapid replacement of blood volume, as well as invasive sensing and emerging life-saving interventions...

READ MORE

Relationships between cognitive factors and gait strategy during exoskeleton-augmented walking

Published in:
Proc. Human Factors and Ergonomics Society Annual Mtg, HFES, Vol. 65, No. 1, 2021.

Summary

Individual variation in exoskeleton-augmented gait strategy may arise from differences in cognitive factors, e.g., ability to respond quickly to stimuli or complete tasks under divided attention. Gait strategy is defined as different approaches to achieving gait priorities (e.g., walking without falling) and is observed via changes in gait characteristics like normalized stride length or width. Changes indicate shifting priorities like increasing stability or coordination with an exoskeleton. Relationships between cognitive factors and exoskeleton gait characteristics were assessed. Cognitive factors were quantified using a modified Simon task and a speed achievement task on a self-paced treadmill with and without a secondary go/no-go task. Individuals with faster reaction times and decreased ability to maintain a given speed tended to prioritize coordination with an exoskeleton over gait stability. These correlations indicate relationships between cognitive factors and individual exoskeleton-augmented gait strategy that should be further investigated to understand variation in exoskeleton use.
READ LESS

Summary

Individual variation in exoskeleton-augmented gait strategy may arise from differences in cognitive factors, e.g., ability to respond quickly to stimuli or complete tasks under divided attention. Gait strategy is defined as different approaches to achieving gait priorities (e.g., walking without falling) and is observed via changes in gait characteristics like...

READ MORE

Utility of inter-subject transfer learning for wearable-sensor-based joint torque prediction models

Published in:
43rd Annual Intl. Conf. of the IEEE Engineering in Medicine & Biology, 31 October 2021-4 November 2021.

Summary

Generalizability between individuals and groups is often a significant hurdle in model development for human subjects research. In the domain of wearable-sensor-controlled exoskeleton devices, the ability to generalize models across subjects or fine-tune more general models to individual subjects is key to enabling widespread adoption of these technologies. Transfer learning techniques applied to machine learning models afford the ability to apply and investigate the viability and utility such knowledge-transfer scenarios. This paper investigates the utility of single- and multi-subject based parameter transfer on LSTM models trained for "sensor-to-joint torque" prediction tasks, with regards to task performance and computational resources required for network training. We find that parameter transfer between both single- and multi-subject models provide useful knowledge transfer, with varying results across specific "source" and "target" subject pairings. This could be leveraged to lower model training time or computational cost in compute-constrained environments or, with further study to understand causal factors of the observed variance in performance across source and target pairings, to minimize data collection and model retraining requirements to select and personalize a generic model for personalized wearable-sensor-based joint torque prediction technologies.
READ LESS

Summary

Generalizability between individuals and groups is often a significant hurdle in model development for human subjects research. In the domain of wearable-sensor-controlled exoskeleton devices, the ability to generalize models across subjects or fine-tune more general models to individual subjects is key to enabling widespread adoption of these technologies. Transfer learning...

READ MORE

Metrics for quantifying cognitive factors that may underlie individual variation in exoskeleton use

Published in:
Proc. of the Human Factors and Ergonomics Society Annual Meeting, Vol. 65, No. 1, 2021, pp. 216-20.

Summary

Individual differences in adaptation to exoskeletons have been observed, but are not well understood. Kinematic, kinetic, and physiologic factors are commonly used to assess these systems. Parameters from experimental psychology and gait literature wereadapted to probe the lower extremity perception-cognition-action loop using measures of reaction times, gait task performance, and gait strategy. Parameters were measured in 15 subjects via two tasks: (1) a modified Simon task and (2) a speed-achievement task with secondary go/no-go cues on a self-paced treadmill. Outcome metrics were assessed for significantly different intra- versus inter-subject variability. Reaction time measures from the modified Simon task, as well two speed-achievement metrics and one gait-strategy characteristic were found to show significant differences in intra- versus inter-subject variability. These results suggest that select cognitive factors may differentiate between individuals and be potential predictors for individual variation during exoskeleton system operation.
READ LESS

Summary

Individual differences in adaptation to exoskeletons have been observed, but are not well understood. Kinematic, kinetic, and physiologic factors are commonly used to assess these systems. Parameters from experimental psychology and gait literature wereadapted to probe the lower extremity perception-cognition-action loop using measures of reaction times, gait task performance, and...

READ MORE

Detecting pathogen exposure during the non-symptomatic incubation period using physiological data: proof of concept in non-human primates

Summary

Background and Objectives: Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. First, we seek to determine the upper limits of early warning detection through physiological measurements. Second, we investigate whether the detected physiological response is specific to the pathogen. Third, we explore the feasibility of extending early warning detection with wearable devices. Research Methods: For the first objective, we developed a supervised random forest algorithm to detect pathogen exposure in the asymptomatic period prior to overt symptoms (fever). We used high-resolution physiological telemetry data (aortic blood pressure, intrathoracic pressure, electrocardiograms, and core temperature) from non-human primate animal models exposed to two viral pathogens: Ebola and Marburg (N = 20). Second, to determine reusability across different pathogens, we evaluated our algorithm against three independent physiological datasets from non-human primate models (N = 13) exposed to three different pathogens: Lassa and Nipah viruses and Y. pestis. For the third objective, we evaluated performance degradation when the algorithm was restricted to features derived from electrocardiogram (ECG) waveforms to emulate data from a non-invasive wearable device. Results: First, our cross-validated random forest classifier provides a mean early warning of 51 ± 12 h, with an area under the receiver-operating characteristic curve (AUC) of 0.93 ± 0.01. Second, our algorithm achieved comparable performance when applied to datasets from different pathogen exposures – a mean early warning of 51 ± 14 h and AUC of 0.95 ± 0.01. Last, with a degraded feature set derived solely from ECG, we observed minimal degradation – a mean early warning of 46 ± 14 h and AUC of 0.91 ± 0.001. Conclusion: Under controlled experimental conditions, physiological measurements can provide over 2 days of early warning with high AUC. Deviations in physiological signals following exposure to a pathogen are due to the underlying host’s immunological response and are not specific to the pathogen. Pre-symptomatic detection is strong even when features are limited to ECG-derivatives, suggesting that this approach may translate to non-invasive wearable devices.
READ LESS

Summary

Background and Objectives: Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. First...

READ MORE

A neural network estimation of ankle torques from electromyography and accelerometry

Summary

Estimations of human joint torques can provide clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Predicting joint torques into the future can also be useful for anticipatory robot control design. In this work, we present a method of mapping joint torque estimates and sequences of torque predictions from motion capture and ground reaction forces to wearable sensor data using several modern types of neural networks. We use dense feedforward, convolutional, neural ordinary differential equation, and long short-term memory neural networks to learn the mapping for ankle plantarflexion and dorsiflexion torque during standing,walking, running, and sprinting, and consider both single-point torque estimation, as well as the prediction of a sequence of future torques. Our results show that long short-term memory neural networks, which consider incoming data sequentially, outperform dense feedforward, neural ordinary differential equation networks, and convolutional neural networks. Predictions of future ankle torques up to 0.4 s ahead also showed strong positive correlations with the actual torques. The proposed method relies on learning from a motion capture dataset, but once the model is built, the method uses wearable sensors that enable torque estimation without the motion capture data.
READ LESS

Summary

Estimations of human joint torques can provide clinically valuable information to inform patient care, plan therapy, and assess the design of wearable robotic devices. Predicting joint torques into the future can also be useful for anticipatory robot control design. In this work, we present a method of mapping joint torque...

READ MORE

Detecting Parkinson's disease from wrist-worn accelerometry in the U.K. Biobank

Published in:
Sensors, Vol. 21, No. 6, 2021, Art. No. 2047.

Summary

Parkinson's disease (PD) is a chronic movement disorder that produces a variety of characteristic movement abnormalities. The ubiquity of wrist-worn accelerometry suggests a possible sensor modality for early detection of PD symptoms and subsequent tracking of PD symptom severity. As an initial proof of concept for this technological approach, we analyzed the U.K. Biobank data set, consisting of one week of wrist-worn accelerometry from a population with a PD primary diagnosis and an age-matched healthy control population. Measures of movement dispersion were extracted from automatically segmented gait data, and measures of movement dimensionality were extracted from automatically segmented low-movement data. Using machine learning classifiers applied to one week of data, PD was detected with an area under the curve (AUC) of 0.69 on gait data, AUC = 0.84 on low-movement data, and AUC = 0.85 on a fusion of both activities. It was also found that classification accuracy steadily improved across the one-week data collection, suggesting that higher accuracy could be achievable from a longer data collection. These results suggest the viability of using a low-cost and easy-to-use activity sensor for detecting movement abnormalities due to PD and motivate further research on early PD detection and tracking of PD symptom severity.
READ LESS

Summary

Parkinson's disease (PD) is a chronic movement disorder that produces a variety of characteristic movement abnormalities. The ubiquity of wrist-worn accelerometry suggests a possible sensor modality for early detection of PD symptoms and subsequent tracking of PD symptom severity. As an initial proof of concept for this technological approach, we...

READ MORE

Using oculomotor features to predict changes in optic nerve sheath diameter and ImPACT scores from contact-sport athletes

Summary

There is mounting evidence linking the cumulative effects of repetitive head impacts to neuro-degenerative conditions. Robust clinical assessment tools to identify mild traumatic brain injuries are needed to assist with timely diagnosis for return-to-field decisions and appropriately guide rehabilitation. The focus of the present study is to investigate the potential for oculomotor features to complement existing diagnostic tools, such as measurements of Optic Nerve Sheath Diameter (ONSD) and Immediate Post-concussion Assessment and Cognitive Testing (ImPACT). Thirty-one high school American football and soccer athletes were tracked through the course of a sports season. Given the high risk of repetitive head impacts associated with both soccer and football, our hypotheses were that (1) ONSD and ImPACT scores would worsen through the season and (2) oculomotor features would effectively capture both neurophysiological changes reflected by ONSD and neuro-functional status assessed via ImPACT. Oculomotor features were used as input to Linear Mixed-Effects Regression models to predict ONSD and ImPACT scores as outcomes. Prediction accuracy was evaluated to identify explicit relationships between eye movements, ONSD, and ImPACT scores. Significant Pearson correlations were observed between predicted and actual outcomes for ONSD (Raw = 0.70; Normalized = 0.45) and for ImPACT (Raw = 0.86; Normalized = 0.71), demonstrating the capability of oculomotor features to capture neurological changes detected by both ONSD and ImPACT. The most predictive features were found to relate to motor control and visual-motor processing. In future work, oculomotor models, linking neural structures to oculomotor function, can be built to gain extended mechanistic insights into neurophysiological changes observed through seasons of participation in contact sports.
READ LESS

Summary

There is mounting evidence linking the cumulative effects of repetitive head impacts to neuro-degenerative conditions. Robust clinical assessment tools to identify mild traumatic brain injuries are needed to assist with timely diagnosis for return-to-field decisions and appropriately guide rehabilitation. The focus of the present study is to investigate the potential...

READ MORE