Publications
Optical Nondestructive Dynamic Measurements of Wafer-Scale Encapsulated Nanofluidic Channels
Summary
Summary
Nanofluidic channels are of great interest for DNA sequencing, chromatography, and drug delivery. However, metrology of embedded or sealed nanochannels and measurement of their fill-state have remained extremely challenging. Existing techniques have been restricted to optical microscopy, which suffers from insufficient resolution, or scanning electron microscopy, which cannot measure sealed...
CoSPA and Traffic Flow Impact Operational Demonstration for the 2017 Convective Season(4.48 MB)
Summary
Summary
MIT Lincoln Laboratory personnel conducted field observations of the Consolidated Storm Prediction for Aviation (CoSPA) 8-hr deterministic convective forecast, and the decision support tool, Traffic Flow Impact (TFI), from 6 June to 31 October 2017. Four field observations were performed during the demonstration period.
Polarimetric observations of chaff using the WSR-88D network
Summary
Summary
Chaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D radars can appear prominently on radar users displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for...
Quantification of radar QPE performance based on SENSR network design possibilities
Summary
Summary
In 2016, the FAA, NOAA, DoD, and DHS initiated a feasibility study for a Spectrum Efficient National Surveillance Radar (SENSR). The goal is to assess approaches for vacating the 1.3- to 1.35-GHz radio frequency band currently allocated to FAA/DoD long-range radars so that this band can be auctioned for commercial...
Multi-layered interactive energy space modeling for near-optimal electrification of terrestrial, shipboard and aircraft systems
Summary
Summary
In this paper, we introduce a basic multi-layered modeling framework for posing the problem of safe, robust and efficient design and control that may lend itself to ripping potential benefits from electrification. The proposed framework establishes dynamic relations between physical concepts such as stored energy, useful work, and wasted energy...
Highly Efficient All-Optical Beam Modulation Utilizing Thermo-optic Effects
Summary
Summary
Suspensions of plasmonic nanoparticles can diffract optical beams due to the combination of thermal lensing and self-phase modulation. Here, we demonstrate extremely efficient optical continuous wave (CW) beam switching across the visible range in optimized suspensions of 5-nm Au and Ag nanoparticles in non-polar solvents, such as hexane and decane...
Hybrid mixed-membership blockmodel for inference on realistic network interactions
Summary
Summary
This work proposes novel hybrid mixed-membership blockmodels (HMMB) that integrate three canonical network models to capture the characteristics of real-world interactions: community structure with mixed-membership, power-law-distributed node degrees, and sparsity. This hybrid model provides the capacity needed for realism, enabling control and inference on individual attributes of interest such as...
Microsputterer with integrated ion-drag focusing for additive manufacturing of thin, narrow conductive lines
Summary
Summary
We report the design, modelling, and proof-of-concept demonstration of a continuously fed, atmospheric-pressure microplasma metal sputterer that is capable of printing conductive lines narrower than the width of the target without the need for post-processing or lithographic patterning. Ion drag-induced focusing is harnessed to print narrow lines; the focusing mechanism...
Next-generation embedded processors: an update
Summary
Summary
For mission assurance, Department of Defense (DoD) embedded systems should be designed to mitigate various aspects of cyber risks, while maintaining performance (size, weight, power, cost, and schedule). This paper reports our latest research effort in the development of a next-generation System-on-Chip (SoC) for DoD applications, which we first presented...
SST asteroid search performance 2014-2017
Summary
Summary
From 2014 to 2017, the Lincoln Near-Earth Asteroid Research (LINEAR) program performed wide-area asteroid search using the 3.5-m Space Surveillance Telescope (SST) located on Atom Peak at White Sands Missile Range, N.M. The SST was developed by MIT Lincoln Laboratory (MIT/LL) for the Defense Advanced Research Projects Agency (DARPA) to...