Publications

Refine Results

(Filters Applied) Clear All

Large-format Geiger-mode avalanche photodiode arrays and readout circuits

Published in:
IEEE J. Sel. Top. Quantum Electron., Vol. 24, No. 2, March/April 2018, 3800510.

Summary

Over the past 20 years, we have developed arrays of custom-fabricated silicon and InP Geiger-mode avalanche photodiode arrays, CMOS readout circuits to digitally count or time stamp single-photon detection events, and techniques to integrate these two components to make back-illuminated solid-state image sensors for lidar, optical communications, and passive imaging. Starting with 4 × 4 arrays, we have recently demonstrated 256 × 256 arrays, and are working to scale to megapixel-class imagers. In this paper, we review this progress and discuss key technical challenges to scaling to large format.
READ LESS

Summary

Over the past 20 years, we have developed arrays of custom-fabricated silicon and InP Geiger-mode avalanche photodiode arrays, CMOS readout circuits to digitally count or time stamp single-photon detection events, and techniques to integrate these two components to make back-illuminated solid-state image sensors for lidar, optical communications, and passive imaging...

READ MORE

Machine learning for medical ultrasound: status, methods, and future opportunities

Published in:
Abdom. Radiol., 2018, doi: 10.1007/s00261-018-1517-0.

Summary

Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited image quality control. Tremendous opportunities have arisen in the last decade as a result of exponential growth in available computational power coupled with progressive miniaturization of US devices. As US devices become smaller, enhanced computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, we review leading machine learning (ML) approaches and research directions in US, with an emphasis on recent ML advances. We also present our outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization.
READ LESS

Summary

Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited...

READ MORE

Trust and performance in human-AI systems for multi-domain command and control

Summary

Command and Control is one of the core tenants of joint military operations, however, the nature of modern security threats, the democratization of technology globally, and the speed and scope of information flows are stressing traditional operational paradigms, necessitating a fundamental shift to better concurrently integrate and operate across multiple physical and virtual domains. In this paper, we aim to address these challenges through the proposition of three concepts that will guide the creation of integrated human-AI Command and Control systems, inspired by recent advances and successes within the commercial sector and academia. The first concept is a framework for integration of AI capabilities into the enterprise that optimizes trust and performance within the workforce. The second is an approach for facilitating multi-domain operations though realtime creation of multi-organization multi-domain task teams by dynamic management of information abstraction, teaming, and risk control. The third is a new paradigm for multi-level data security and multi-organization data sharing that will be a key enabler of joint and coalition multi-domain operation in the future. Lastly, we propose a set of recommendations towards the research, development, and instantiation of these transformative advances in Command and Control capability.
READ LESS

Summary

Command and Control is one of the core tenants of joint military operations, however, the nature of modern security threats, the democratization of technology globally, and the speed and scope of information flows are stressing traditional operational paradigms, necessitating a fundamental shift to better concurrently integrate and operate across multiple...

READ MORE

XLab: early indications & warning from open source data with application to biological threat

Published in:
Proc. 51st Hawaii Int. Conf. on System Sciences, HICSS 2018, pp. 944-953.

Summary

XLab is an early warning system that addresses a broad range of national security threats using a flexible, rapidly reconfigurable architecture. XLab enables intelligence analysts to visualize, explore, and query a knowledge base constructed from multiple data sources, guided by subject matter expertise codified in threat model graphs. This paper describes a novel system prototype that addresses threats arising from biological weapons of mass destruction. The prototype applies knowledge extraction analytics—including link estimation, entity disambiguation, and event detection—to build a knowledge base of 40 million entities and 140 million relationships from open sources. Exact and inexact subgraph matching analytics enable analysts to search the knowledge base for instances of modeled threats. The paper introduces new methods for inexact matching that accommodate threat models with temporal and geospatial patterns. System performance is demonstrated using several simplified threat models and an embedded scenario.
READ LESS

Summary

XLab is an early warning system that addresses a broad range of national security threats using a flexible, rapidly reconfigurable architecture. XLab enables intelligence analysts to visualize, explore, and query a knowledge base constructed from multiple data sources, guided by subject matter expertise codified in threat model graphs. This paper...

READ MORE

Improving security at the system-call boundary in a type-safe operating system

Published in:
Thesis (M.E.)--Massachusetts Institute of Technology, 2018.

Summary

Historically, most approaches to operating sytems security aim to either protect the kernel (e.g., the MMU) or protect user applications (e.g., W exclusive or X). However, little study has been done into protecting the boundary between these layers. We describe a vulnerability in Tock, a type-safe operating system, at the system-call boundary. We then introduce a technique for providing memory safety at the boundary between userland and the kernel in Tock. We demonstrate that this technique works to prevent against the aforementioned vulnerability and a class of similar vulnerabilities, and we propose how it might be used to protect against simliar vulnerabilities in other operating systems.
READ LESS

Summary

Historically, most approaches to operating sytems security aim to either protect the kernel (e.g., the MMU) or protect user applications (e.g., W exclusive or X). However, little study has been done into protecting the boundary between these layers. We describe a vulnerability in Tock, a type-safe operating system, at the...

READ MORE

Classifier performance estimation with unbalanced, partially labeled data

Published in:
Proc. Machine Learning Research, Vol. 88, 2018, pp. 4-16.

Summary

Class imbalance and lack of ground truth are two significant problems in modern machine learning research. These problems are especially pressing in operational contexts where the total number of data points is extremely large and the cost of obtaining labels is very high. In the face of these issues, accurate estimation of the performance of a detection or classification system is crucial to inform decisions based on the observations. This paper presents a framework for estimating performance of a binary classifier in such a context. We focus on the scenario where each set of measurements has been reduced to a score, and the operator only investigates data when the score exceeds a threshold. The operator is blind to the number of missed detections, so performance estimation targets two quantities: recall and the derivative of precision with respect to recall. Measuring with respect to error in these two metrics, simulations in this context demonstrate that labeling outliers not only outperforms random labeling, but often matches performance of an adaptive method that attempts to choose the optimal data for labeling. Application to real anomaly detection data confirms the utility of the approach, and suggests direction for future work.
READ LESS

Summary

Class imbalance and lack of ground truth are two significant problems in modern machine learning research. These problems are especially pressing in operational contexts where the total number of data points is extremely large and the cost of obtaining labels is very high. In the face of these issues, accurate...

READ MORE

Key Challenges and Prospects for Optical Standoff Trace Detection of Explosives

Published in:
Trends in Analytical Chemistry, vol. 100

Summary

Sophisticated improvised explosive devices (IEDs) challenge the capabilities of current sensors, particularly in areas away from static checkpoints. This security gap could be filled by standoff chemical sensors that detect IEDs based on external trace explosive residues. Unfortunately, previous efforts have not led to widely deployed capabilities. Crucially, the physical morphology of trace explosive residues and chemical “clutter” present unique challenges to the operational performance of standoff sensors. In this review, an overview of standoff trace explosive detection systems is provided in the context of these unique challenges. Tradespace analysis is performed for two popular standoff detection methods: longwave infrared hyperspectral imaging and deep-UV Raman spectroscopy. The tradespace analysis method described in this review incorporates realistic trace explosive residues and background clutter into the technology development process. The review predicts system performance and areas where additional research is needed for these two technologies to optimize performance.
READ LESS

Summary

Sophisticated improvised explosive devices (IEDs) challenge the capabilities of current sensors, particularly in areas away from static checkpoints. This security gap could be filled by standoff chemical sensors that detect IEDs based on external trace explosive residues. Unfortunately, previous efforts have not led to widely deployed capabilities. Crucially, the physical...

READ MORE

Potential impacts of climate warming and increased summer heat stress on the electric grid: a case study for a large power transformer (LPT) in the Northeast United States

Published in:
Climatic Change, 20 November 2017, https://doi.org/10.1007/s10584-017-2114-x
R&D group:

Summary

Large power transformers (LPTs) are critical yet vulnerable components of the power grid. More frequent and intense heat waves or high temperatures can degrade their operational lifetime and increase the risk of premature failure. Without adequate preparedness, a widespread situation could ultimately lead to prolonged grid disruption and incur excessive economic costs. Here, we investigate the potential impact of climate warming and corresponding shifts in summertime "hot days" on a selected LPT located in the Northeast United States. We apply an analogue method, which detects the occurrence of hot days based on the salient, associated large-scale atmospheric conditions, to assess the risk of future change in their occurrence. Compared with the more conventional approach that relies on climate model simulated daily maximum temperature, the analogue method produces model medians of late twentieth century hot day frequency that are more consistent with observation and have stronger inter-model consensus. Under the climate warming scenarios, multi-model medians of both model daily maximum temperature and the analogue method indicate strong decadal increases in hot day frequency by the late twenty-first century, but the analogue method improves model consensus considerably. The decrease of transformer lifetime with temperature increase is further assessed. The improved inter-model consensus of the analogue method is viewed as a promising step toward providing actionable information for a more stable, reliable, and environmentally responsible national grid.
READ LESS

Summary

Large power transformers (LPTs) are critical yet vulnerable components of the power grid. More frequent and intense heat waves or high temperatures can degrade their operational lifetime and increase the risk of premature failure. Without adequate preparedness, a widespread situation could ultimately lead to prolonged grid disruption and incur excessive...

READ MORE

Detecting pathogen exposure during the non-symptomatic incubation period using physiological data

Summary

Early pathogen exposure detection allows better patient care and faster implementation of public health measures (patient isolation, contact tracing). Existing exposure detection most frequently relies on overt clinical symptoms, namely fever, during the infectious prodromal period. We have developed a robust machine learning based method to better detect asymptomatic states during the incubation period using subtle, sub-clinical physiological markers. Starting with highresolution physiological waveform data from non-human primate studies of viral (Ebola, Marburg, Lassa, and Nipah viruses) and bacterial (Y. pestis) exposure, we processed the data to reduce short-term variability and normalize diurnal variations, then provided these to a supervised random forest classification algorithm and post-classifier declaration logic step to reduce false alarms. In most subjects detection is achieved well before the onset of fever; subject cross-validation across exposure studies (varying viruses, exposure routes, animal species, and target dose) lead to 51h mean early detection (at 0.93 area under the receiver-operating characteristic curve [AUCROC]). Evaluating the algorithm against entirely independent datasets for Lassa, Nipah, and Y. pestis exposures un-used in algorithm training and development yields a mean 51h early warning time (at AUCROC=0.95). We discuss which physiological indicators are most informative for early detection and options for extending this capability to limited datasets such as those available from wearable, non-invasive, ECG-based sensors.
READ LESS

Summary

Early pathogen exposure detection allows better patient care and faster implementation of public health measures (patient isolation, contact tracing). Existing exposure detection most frequently relies on overt clinical symptoms, namely fever, during the infectious prodromal period. We have developed a robust machine learning based method to better detect asymptomatic states...

READ MORE

Peregrine: 3-D network localization and navigation

Published in:
IEEE 9th Latin-American Conf. on Communications, LATINCOM, 8-10 November 2017.

Summary

Location-aware devices will create new services and applications in emerging fields such as autonomous driving, smart cities, and the Internet of Things. Many existing localization systems rely on anchors such as satellites at known positions which broadcast radio signals. However, such signals may be blocked by obstacles, corrupted by multipath propagation, or provide insufficient localization accuracy. Therefore, ubiquitous localization remains an extremely challenging problem. This paper introduces Peregrine, a 3-D cooperative network localization and navigation (NLN) system. Peregrine nodes are low-cost business-card-sized devices, consisting of a microprocessor, a commercially available ultra-wideband (UWB) radio module, and a small battery. Recently developed distributed algorithms are used in Peregrine to solve the highly interrelated problems of node inference and node activation in real-time, enabling resource efficiency, scalability, and accuracy for NLN. Node inference – based on the recently introduced sigma point belief propagation (SPBP) algorithm – enables spatiotemporal cooperation in realtime and estimates the nodes' positions accurately from UWB distance measurements. A distributed node activation algorithm controls channel access to improve the efficiency and reduce the localization error of the network. Contributions of each algorithmic component to overall system performance are validated through indoor localization experiments. Our results show that Peregrine achieves decimeter-level 3-D position accuracy in a challenging propagation environment.
READ LESS

Summary

Location-aware devices will create new services and applications in emerging fields such as autonomous driving, smart cities, and the Internet of Things. Many existing localization systems rely on anchors such as satellites at known positions which broadcast radio signals. However, such signals may be blocked by obstacles, corrupted by multipath...

READ MORE