Publications

Refine Results

(Filters Applied) Clear All

Systematic analysis of defenses against return-oriented programming

Published in:
RAID 2013: 16th Int. Symp. on Research in Attacks, Intrusions, and Defenses, LNCS 8145, 23-25 October 2013.

Summary

Since the introduction of return-oriented programming, increasingly compiles defenses and subtle attacks that bypass them have been proposed. Unfortunately the lack of a unifying threat model among code reuse security papers makes it difficult to evaluate the effectiveness of defenses, and answer critical questions about the interoperability, composability, and efficacy of existing defensive techniques. For example, what combination of defenses protect against every known avenue of code reuse? What is the smallest set of such defenses? In this work, we study the space of code reuse attacks by building a formal model of attacks and their requirements, and defenses and their assumptions. We use a SAT solver to perform scenario analysis on our model in two ways. First, we analyze the defense configurations of a real-world system. Second, we reason about hypothetical defense bypasses. We prove by construction that attack extensions implementing the hypothesized functionality are possible even if a 'perfect' version of the defense is implemented. Our approach can be used to formalize the process of threat model definition, analyze defense configurations, reason about composability and efficacy, and hypothesize about new attacks and defenses.
READ LESS

Summary

Since the introduction of return-oriented programming, increasingly compiles defenses and subtle attacks that bypass them have been proposed. Unfortunately the lack of a unifying threat model among code reuse security papers makes it difficult to evaluate the effectiveness of defenses, and answer critical questions about the interoperability, composability, and efficacy...

READ MORE

Flux-charge duality and topological quantum phase fluctuations in quasi-one-dimensional superconductors

Published in:
New J. Phys., Vol. 15, 2013, 105017.

Summary

It has long been thought that macroscopic phase coherence breaks down in effectively lower-dimensional superconducting systems even at zero temperature due to enhanced topological quantum phase fluctuations. In quasi-one-dimensional wires, these fluctuations are described in terms of 'quantum phase-slip' (QPS): tunneling of the superconducting order parameter for the wire between states differing by plus or minus 2 pi in their relative phase between the wire's ends. Over the last several decades, many deviations from conventional bulk superconducting behavior have been observed in ultra-narrow superconducting nanowires, some of which have been identified with QPS. While at least some of the observations are consistent with existing theories for QPS, other observations in many cases point to contradictory conclusions or cannot be explained by these theories. Hence, our understanding of the nature of QPS, and its relationship to the various observations, has remained incomplete. In this paper we present a new model for QPS which takes as its starting point an idea originally postulated by Mooij and Nazarov (2006 Nature Phys. 2 169): that flux-charge duality, a classical symmertry of Maxwell's equations, can be used to relate QPS to the well-known Josephson tunneling of Cooper pairs. Our model provides an alternative, and qualitatively different, conceptual basis for QPS and the phenomena which arise from it in experiments, and it appears to permit for the first time a unified understanding of observations across several different types of experiments and materials systems.
READ LESS

Summary

It has long been thought that macroscopic phase coherence breaks down in effectively lower-dimensional superconducting systems even at zero temperature due to enhanced topological quantum phase fluctuations. In quasi-one-dimensional wires, these fluctuations are described in terms of 'quantum phase-slip' (QPS): tunneling of the superconducting order parameter for the wire between...

READ MORE

A least mean squares approach of iterative array calibration for scalable digital phased array radar panels

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

This paper describes a semiautonomous approach to calibrate a phased array system, with particular use on an S-band aperture that is being developed at MIT Lincoln Laboratory. Each element of the array is controlled by an independent digital phase shifter, whose control signal may be uniquely defined. As active electronically steerable arrays (AESAs) continually evolve towards mostly digital paradigms that will support real-time computing, as opposed to look-up table approaches, then adaptive calibration approaches may be pursued for maximum AESA performance. This calibration work is being completed as one component of Lincoln Laboratory's effort within the multifunction phased array radar (MPAR) initiative.
READ LESS

Summary

This paper describes a semiautonomous approach to calibrate a phased array system, with particular use on an S-band aperture that is being developed at MIT Lincoln Laboratory. Each element of the array is controlled by an independent digital phase shifter, whose control signal may be uniquely defined. As active electronically...

READ MORE

A method for improved cross-pol isolation based on the use of auxiliary elements

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

This paper describes a method to answer the following questions: can several of the elements of a phased array be employed as auxiliary (AUX) elements and how can the phase of each be adjusted so that the (1) cross-polarization (cross-pol) isolation is minimized to 40 dB, (2) the sidelobe levels of the main lobe are minimally impacted, and (3) the width and height of the main lobe are minimally impacted? This calibration work is being completed as one component of Lincoln Laboratory's effort within the multifunction phased array radar (MPAR) initiative. Devoting a few of the elements to serve as the AUX channels to specifically operate to mitigate the effects of the cross-pol influence, the distributed sidelobe levels will not suffer much impact; yet, the impact of the AUX elements will have deepened the cross-pol isolation at the peak of the co-polar beam can occur because the AUX elements can achieve a high degree of narrowband angular resolution.
READ LESS

Summary

This paper describes a method to answer the following questions: can several of the elements of a phased array be employed as auxiliary (AUX) elements and how can the phase of each be adjusted so that the (1) cross-polarization (cross-pol) isolation is minimized to 40 dB, (2) the sidelobe levels...

READ MORE

Cryogenically cooled, 149 W, Q-switched, YbLiYF4 laser

Published in:
Opt. Lett., Vol. 38, No. 20, 15 October 2013, pp. 4260-1.

Summary

We demonstrate a 149 W Yb:LiYF4 laser with diffraction-limitation beam quality at 995 nm. The laser, Q-switched at 10 kHz pulse repetition frequency, produces linearly polarized 52 ns pulses with a slope efficiency of 73%. The combination of cryogenic cooling and a low (3.5%) quantum defect results in minimal thermo-optic effects and high thermal efficiency. The measured heat load to the cryogen is 0.15 W per watt of output. These results show the potential for significant power scaling of Q-switched Yb:YLF lasers with excellent beam quality.
READ LESS

Summary

We demonstrate a 149 W Yb:LiYF4 laser with diffraction-limitation beam quality at 995 nm. The laser, Q-switched at 10 kHz pulse repetition frequency, produces linearly polarized 52 ns pulses with a slope efficiency of 73%. The combination of cryogenic cooling and a low (3.5%) quantum defect results in minimal thermo-optic...

READ MORE

Dual-polarization challenges in weather radar requirements for multifunction phased array radar

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

This paper summarizes the challenges in achieving (and even specifying) the antenna polarization accuracy requirements for the Multifunction Phased Array Radar (MPAR) and the progress that has been made towards meeting these requirements through demonstrations and theoretical investigations.
READ LESS

Summary

This paper summarizes the challenges in achieving (and even specifying) the antenna polarization accuracy requirements for the Multifunction Phased Array Radar (MPAR) and the progress that has been made towards meeting these requirements through demonstrations and theoretical investigations.

READ MORE

Low cost phased array radar for applications in engineering education

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

Hands-on instruction in engineering education is beneficial to the development of a workforce that understands the complexity of building radar systems. Unfortunately, building phased array systems tends to be too costly to allow student access to the hardware necessary for developing these skills. This paper presents a low cost phased array based on a time-domain multiplexed, multiple-input, multiple-output (TDM-MIMO) approach that has been built for education. This array has been utilized in several free courses held at the Massachusetts Institute of Technology during the Independent Activity Period (IAP) between semesters. Students have built, tested, and taken home a number of these radars and continue to operate these on their own, either for recreation or as part of their undergraduate research activities.
READ LESS

Summary

Hands-on instruction in engineering education is beneficial to the development of a workforce that understands the complexity of building radar systems. Unfortunately, building phased array systems tends to be too costly to allow student access to the hardware necessary for developing these skills. This paper presents a low cost phased...

READ MORE

Multi-lithic phased array architecture for airborne sense and avoid radar

Summary

Transmit and receive Ku-band phased array designs are described for testing an airborne sense and avoid radar. The arrays are small with a size of 24 cm x 9 cm and operate from 13 to 17 GHz with electronic scanning from plus of minus 45 degrees in azimuth and plus of minus 30 degrees in elevation. A novel design architecture allows the use of multiple multilayered printed circuit boards and simple air cooling.
READ LESS

Summary

Transmit and receive Ku-band phased array designs are described for testing an airborne sense and avoid radar. The arrays are small with a size of 24 cm x 9 cm and operate from 13 to 17 GHz with electronic scanning from plus of minus 45 degrees in azimuth and plus...

READ MORE

On the development of a tileable LRU for the NextGen surveillance and weather radar capability program

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

MIT Lincoln Laboratory is working towards the development of a tileable radar panel to satisfy multimission needs. A combination of custom and commercial off-the-shelf (COTS) Monolithic Microwave Integrated Circuits (MMICs) have been developed and/or employed to achieve the required system functionality. The integrated circuits (ICs) are integrated into a low cost T/R module compatible with commercial printed circuit board (PCB) manufacturing. Sixty-four of the transmit/receive (T/R) modules are integrated onto the aperture PCB in an 8x8 lattice. In addition to the T/R elements, the aperture PCB incorporates transmit and receive beamformers, power and logic distribution, and radiating elements. The aperture PCB is coupled with a backplane PCB to form a panel, the line replaceable unit (LRU) for the multifunction phased array radar (MPAR) initiative. This report summarizes the evaluation of the second iteration LRU aperture PCB and T/R element. Support fixturing was developed and paired with the panel to enable backplane functionality sufficient to support the test objective.
READ LESS

Summary

MIT Lincoln Laboratory is working towards the development of a tileable radar panel to satisfy multimission needs. A combination of custom and commercial off-the-shelf (COTS) Monolithic Microwave Integrated Circuits (MMICs) have been developed and/or employed to achieve the required system functionality. The integrated circuits (ICs) are integrated into a low...

READ MORE

Ultrawideband time-delay steered UHF dipole linear array antenna

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

An ultrawideband fixed time-delay steered UHF dipole array antenna has been developed for coverage in the 300 to 450 MHz frequency range for communications or radar applications. The antenna utilizes a parasitically-tuned dipole array for linear polarization and is mounted over a ground plane. Numerical electromagnetic simulations were used to analyze and optimize the antenna parameters prior to fabrication. Measurements of the prototype antenna in an anechoic chamber demonstrate the antenna's reflection coefficient and radiation gain pattern performance.
READ LESS

Summary

An ultrawideband fixed time-delay steered UHF dipole array antenna has been developed for coverage in the 300 to 450 MHz frequency range for communications or radar applications. The antenna utilizes a parasitically-tuned dipole array for linear polarization and is mounted over a ground plane. Numerical electromagnetic simulations were used to...

READ MORE