Publications

Refine Results

(Filters Applied) Clear All

Wind Information Requirements for NextGen Applications - Phase 2 Final Report(7.63 MB)

Summary

Accurate wind information is of fundamental importance to some of the critical future air traffic concepts envisioned under the FAA’s Next Generation Air Transportation System (NextGen) initiative. In the first phase of this work, a Wind Information Analysis Framework was developed to help explore the relationship of wind information to NextGen application performance. A refined version of the framework has been developed for the Phase 2 work.
READ LESS

Summary

Accurate wind information is of fundamental importance to some of the critical future air traffic concepts envisioned under the FAA’s Next Generation Air Transportation System (NextGen) initiative. In the first phase of this work, a Wind Information Analysis Framework was developed to help explore the relationship of wind information to...

READ MORE

Impact ionization in AlxGa1-xASySb1-y avalanche photodiodes

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed APDs, which allowed for both pure electron and pure hole injection in the same device. Photo-multiplication measurements were made at temperatures ranging from 77K to 300K for all three alloys. A quasi-physical model with an explicit temperature dependence was used to express the impact ionization coefficients as a function of electric-field strength and temperature. For all three alloys, it was found that alpha < beta at any given temperature. In addition, the values of the impact ionization coefficients were found to decrease as the aluminum concentration of the AlGaAsSb alloy was increased. A value between 1.2 and 4.0 was found for beta/x, which is dependent on temperature, alloy composition, and electric-field strength.
READ LESS

Summary

Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed...

READ MORE

LuminoCity: a 3D printed, illuminated city generated from LADAR data

Published in:
TePRA 2014: IEEE Int. Conf. on Tech. for Practical Robot Appl., 14-15 April 2014.

Summary

In this work, we describe LuminoCity, a novel three-dimensional data display. A 3D printed model of Cambridge, MA was generated from LADAR data. A translucent plastic model was then cast from a mold of the 3D printed model. We developed a display system to project data onto the translucent model, and we can project a wide range of analyses onto the city, including satellite imagery and network traffic.
READ LESS

Summary

In this work, we describe LuminoCity, a novel three-dimensional data display. A 3D printed model of Cambridge, MA was generated from LADAR data. A translucent plastic model was then cast from a mold of the 3D printed model. We developed a display system to project data onto the translucent model...

READ MORE

Strategic evolution of adversaries against temporal platform diversity active cyber defenses

Published in:
2014 Spring Simulation Multi-Confernece, SpringSim 2014, 13-16 April 2014.

Summary

Adversarial dynamics are a critical facet within the cyber security domain, in which there exists a co-evolution between attackers and defenders in any given threat scenario. While defenders leverage capabilities to minimize the potential impact of an attack, the adversary is simultaneously developing countermeasures to the observed defenses. In this study, we develop a set of tools to model the adaptive strategy formulation of an intelligent actor against an active cyber defensive system. We encode strategies as binary chromosomes representing finite state machines that evolve according to Holland's genetic algorithm. We study the strategic considerations including overall actor reward balanced against the complexity of the determined strategies. We present a series of simulation results demonstrating the ability to automatically search a large strategy space for optimal resultant fitness against a variety of counter-strategies.
READ LESS

Summary

Adversarial dynamics are a critical facet within the cyber security domain, in which there exists a co-evolution between attackers and defenders in any given threat scenario. While defenders leverage capabilities to minimize the potential impact of an attack, the adversary is simultaneously developing countermeasures to the observed defenses. In this...

READ MORE

Finding focus in the blur of moving-target techniques

Published in:
IEEE Security and Privacy, Vol. 12, No. 2, March/April 2014, pp. 16-26.

Summary

Moving-target (MT) techniques seek to randomize system components to reduce the likelihood of a successful attack, add dynamics to a system to reduce the lifetime of an attack, and diversify otherwise homogeneous collections of systems to limit the damage of a large-scale attack. In this article, we review the five dominant domains of MT techniques, consider the advantages and weaknesses of each, and make recommendations for future research.
READ LESS

Summary

Moving-target (MT) techniques seek to randomize system components to reduce the likelihood of a successful attack, add dynamics to a system to reduce the lifetime of an attack, and diversify otherwise homogeneous collections of systems to limit the damage of a large-scale attack. In this article, we review the five...

READ MORE

Effective parallel computation of eigenpairs to detect anomalies in very large graphs

Published in:
SIAM Conference on Parallel Processing for Scientific Computing

Summary

The computational driver for an important class of graph analysis algorithms is the computation of leading eigenvectors of matrix representations of the graph. In this presentation, we discuss the challenges of calculating eigenvectors of modularity matrices derived from very large graphs (upwards of a billion vertices) and demonstrate the scaling properties of parallel eigensolvers when applied to these matrices.
READ LESS

Summary

The computational driver for an important class of graph analysis algorithms is the computation of leading eigenvectors of matrix representations of the graph. In this presentation, we discuss the challenges of calculating eigenvectors of modularity matrices derived from very large graphs (upwards of a billion vertices) and demonstrate the scaling...

READ MORE

Secondary Surveillance Phased Array Radar (SSPAR): initial feasibility study

Summary

The U.S. Federal Aviation Administration is deploying Automatic Dependent Surveillance-Broadcast (ADS-B) to provide next-generation surveillance derived through down- and cross-link of global positioning satellite (GPS) navigation data. While ADS-B will be the primary future surveillance system, FAA recognizes that backup surveillance capabilities must be provided to assure that air traffic control (ATC) services can continue to be provided when individual aircraft transponders fail and during localized, short-duration GPS outages. This report describes a potential ADS-B backup capability, Secondary Surveillance Phased Array Radar or SSPAR. SSPAR will interrogate aircraft transponders and receive replies using a sparse, non-rotating array of approximately 17 omnidirectional (in azimuth) antennae. Each array element will transmit and receive independently so as to form directional transmit beams for transponder interrogation, and support high-resolution direction finding for received signals. Because each SSPAR element is independently digitized, transponder returns from all azimuths can be equipped with Traffic Alert and Collision Avoidance System (TCAS) and ADS-B avionics to reduce spectrum usage and maintain the high surveillance update rate (~1 per second) achieved by ADS-B. Recurring costs for SSPAR will be low since it involves no moving parts and the number of array channels is small. This report describes an SSPAR configuration supporting terminal operations. We consider interrogation and receive approaches, antenna array configuration, signal processing and preliminary performance analysis. An analysis of SSPAR's impact on spectrum congestion in the beacon radar band is presented, as are concepts for integrating SSPAR and next generation primary radar to improve the efficiency and accuracy of aircraft and weather surveillance.
READ LESS

Summary

The U.S. Federal Aviation Administration is deploying Automatic Dependent Surveillance-Broadcast (ADS-B) to provide next-generation surveillance derived through down- and cross-link of global positioning satellite (GPS) navigation data. While ADS-B will be the primary future surveillance system, FAA recognizes that backup surveillance capabilities must be provided to assure that air traffic...

READ MORE

Forecast confidence measures for deterministic storm-scale aviation forecasts

Published in:
4th Aviation, Range, and Aerospace Meteorology Special Symp., 2-6 February 2014.

Summary

Deterministic storm-scale weather forecasts, such as those generated from the FAA's 0-8 hour CoSPA system, are highly valuable to aviation traffic managers. They provide forecasted characteristics of storm structure, strength, orientation, and coverage that are very helpful for strategic planning purposes in the National Airspace System (NAS). However, these deterministic weather forecasts contain inherent uncertainty that varies with the general weather scenario at the forecast issue time, the predicted storm type, and the forecast time horizon. This uncertainty can cause large changes in the forecast from update to update, thereby eroding user confidence and ultimately reducing the forecast's effectiveness in the decision-making process. Deterministic forecasts generally lack objective measures of this uncertainty, making it very difficult for users of the forecast to know how much confidence to have in the forecast during their decision-making process. This presentation will describe a methodology to provide measures of confidence for deterministic storm-scale forecasts. The method inputs several characteristics of the current and historical weather forecasts, such as spatial scale, intensity, weather type, orientation, permeability, and run-to-run variability of the forecasts, into a statistical model to provide a measure of confidence in a forecasted quantity. In this work, the forecasted quantity is aircraft blockage associated with key high-impact Flow Constrained Areas (FCAs) in the NAS. The results from the method, which will also be presented, provide the user with a measure of forecast confidence in several blockage categories (none, low, medium, and high) associated with the FCAs. This measure of forecast confidence is geared toward helping en-route strategic planners in the NAS make better use of deterministic storm-scale weather forecasts for air traffic management.
READ LESS

Summary

Deterministic storm-scale weather forecasts, such as those generated from the FAA's 0-8 hour CoSPA system, are highly valuable to aviation traffic managers. They provide forecasted characteristics of storm structure, strength, orientation, and coverage that are very helpful for strategic planning purposes in the National Airspace System (NAS). However, these deterministic...

READ MORE

Velocity estimation improvements for the ASR-9 Weather Systems Processor

Published in:
American Meteorological Society Annual Meeting, 2-6 February 2014.

Summary

The Airport Surveillance Radar (ASR-9) is a rapid-scanning terminal aircraft detection system deployed at airports around the United States. To provide cost-effective wind shear detection capability at medium-density airports, the Weather Systems Processor (WSP) was developed and added on to the ASR-9 at 35 sites. The WSP on the ASR-9 is capable of utilizing dual fan-beam estimates of reflectivity and velocity in order to detect low-level features such as gust fronts, wind shear, and microbursts, which would normally be best detectable by a low-scanning pencil beam radar. An upgrade to the ASR-9 WSP, which is currently ongoing, allows for additional computational complexity in the front-end digital signal processing algorithms compared to previous iterations of the system. This paper will explore ideas for improving velocity estimates, including low-level dual beam weight estimation, de-aliasing, and noise reduction. A discussion of the unique challenges afforded by the ASR-9's block-stagger pulse repetition time is presented, along with thoughts on how to overcome limitations which arise from rapid-scanning and the inherent lack of pulses available for coherent averaging.
READ LESS

Summary

The Airport Surveillance Radar (ASR-9) is a rapid-scanning terminal aircraft detection system deployed at airports around the United States. To provide cost-effective wind shear detection capability at medium-density airports, the Weather Systems Processor (WSP) was developed and added on to the ASR-9 at 35 sites. The WSP on the ASR-9...

READ MORE

High-sensitivity detection of trace gases using dynamic photoacoustic spectroscopy

Published in:
Opt. Eng., Vol. 53 No. 2, February 2014, 021103.

Summary

Lincoln Laboratory of Massachusetts Institute of Technology has developed a technique known as dynamic photoacoustic spectroscopy (DPAS) that could enable remote detection of trace gases via a field-portable laser-based system. A fielded DPAS system has the potential to enable rapid, early warning of airborne chemical threats. DPAS is a new form of photoacoustic spectroscopy that relies on a laser beam swept at the speed of sound to amplify an otherwise weak photoacoustic signal. We experimentally determine the sensitivity of this technique using trace quantities of SF6 gas. A clutter-limited sensitivity of ~100 ppt is estimated for an integration path of 0.43 m. Additionally, detection at ranges over 5 m using two different detection modalities is demonstrated: a parabolic microphone and a laser vibrometer. Its utility in detecting ammonia emanating from solid samples in an ambient environment is also demonstrated.
READ LESS

Summary

Lincoln Laboratory of Massachusetts Institute of Technology has developed a technique known as dynamic photoacoustic spectroscopy (DPAS) that could enable remote detection of trace gases via a field-portable laser-based system. A fielded DPAS system has the potential to enable rapid, early warning of airborne chemical threats. DPAS is a new...

READ MORE