Publications

Refine Results

(Filters Applied) Clear All

The MIT-LL/AFRL IWSLT-2013 MT System

Summary

This paper describes the MIT-LL/AFRL statistical MT system and the improvements that were developed during the IWSLT 2013 evaluation campaign [1]. As part of these efforts, we experimented with a number of extensions to the standard phrase-based model that improve performance on the Russian to English, Chinese to English, Arabic to English, and English to French TED-talk translation task. We also applied our existing ASR system to the TED-talk lecture ASR task. We discuss the architecture of the MIT-LL/AFRL MT system, improvements over our 2012 system, and experiments we ran during the IWSLT-2013 evaluation. Specifically, we focus on 1) cross-entropy filtering of MT training data, and 2) improved optimization techniques, 3) language modeling, and 4) approximation of out-of-vocabulary words.
READ LESS

Summary

This paper describes the MIT-LL/AFRL statistical MT system and the improvements that were developed during the IWSLT 2013 evaluation campaign [1]. As part of these efforts, we experimented with a number of extensions to the standard phrase-based model that improve performance on the Russian to English, Chinese to English, Arabic...

READ MORE

Reagent assessment for detection of ammonium ion-molecule complexes

Published in:
Rapid Commun. Mass Spectrom., Vol. 27, 2013, pp. 2797-2806.

Summary

An MS-based framework was developed to quantitatively assess API ion-molecule reagent chemistries based on ammonium selectivity versus competing ions, and intrinsic ammonium binding strength and complex survivability for detection. Methyl acetoacetate is an attractive ammonium reagent for vapor-phase API techniques given its high vapor pressure, preferential selectivity, and high critical energy for dissociation.
READ LESS

Summary

An MS-based framework was developed to quantitatively assess API ion-molecule reagent chemistries based on ammonium selectivity versus competing ions, and intrinsic ammonium binding strength and complex survivability for detection. Methyl acetoacetate is an attractive ammonium reagent for vapor-phase API techniques given its high vapor pressure, preferential selectivity, and high critical...

READ MORE

Ultrawideband superstrate-enhanced substrate-loaded array with integrated feed

Published in:
IEEE Trans. Antennas Propag., Vol. 61, No. 11, November 2013, pp. 5802-7.

Summary

A superstrate-enhanced substrate-loaded array (SESLA) with an integrated feed is presented. The design allows for a practical implementation of the SESLA, a concept previously presented by the authors for realizing extremely wideband (> 10 : 1) low-profile arrays. Specifically, the feed provides unbalanced to balanced transformation allowing the balance-fed SESLA to be excited with a 50 omega unbalanced line. The resulting array/feed combination is matched across a 13.9 : 1 bandwidth (infinite array, V SW R less than or equal to 2.4). When scanned to 45 degrees in the E-, H-, and D-planes, the unit cell operates across a 13.3 : 1 bandwidth using a relaxed matching criterion of V SW R less than or equal to 3. The design is validated through extensive measurement of an 8x8 prototype array.
READ LESS

Summary

A superstrate-enhanced substrate-loaded array (SESLA) with an integrated feed is presented. The design allows for a practical implementation of the SESLA, a concept previously presented by the authors for realizing extremely wideband (> 10 : 1) low-profile arrays. Specifically, the feed provides unbalanced to balanced transformation allowing the balance-fed SESLA...

READ MORE

Review of Systems-Theoretic Process Analysis (STPA) method and results to support NextGen concept assessment and validation

Published in:
MIT Lincoln Laboratory Report ATC-427
Topic:

Summary

This report provides an assessment of the applicability of Systems-Theoretic Process Analysis (STPA) to perform preliminary risk-based modeling of complex NextGen concepts, based on the observed application of STPA to Interval Management-Spacing (IM-S) as a case study. The report also considers the potential use of STPA as a formal tool for safety analysis at the Federal Aviation Administration. This report's sources include a report documenting the application of STPA performed by the MIT Systems Engineering Research Lab (SERL), previous reports, and input from other staff and aviation subject-matter experts.
READ LESS

Summary

This report provides an assessment of the applicability of Systems-Theoretic Process Analysis (STPA) to perform preliminary risk-based modeling of complex NextGen concepts, based on the observed application of STPA to Interval Management-Spacing (IM-S) as a case study. The report also considers the potential use of STPA as a formal tool...

READ MORE

Systematic analysis of defenses against return-oriented programming

Published in:
RAID 2013: 16th Int. Symp. on Research in Attacks, Intrusions, and Defenses, LNCS 8145, 23-25 October 2013.

Summary

Since the introduction of return-oriented programming, increasingly compiles defenses and subtle attacks that bypass them have been proposed. Unfortunately the lack of a unifying threat model among code reuse security papers makes it difficult to evaluate the effectiveness of defenses, and answer critical questions about the interoperability, composability, and efficacy of existing defensive techniques. For example, what combination of defenses protect against every known avenue of code reuse? What is the smallest set of such defenses? In this work, we study the space of code reuse attacks by building a formal model of attacks and their requirements, and defenses and their assumptions. We use a SAT solver to perform scenario analysis on our model in two ways. First, we analyze the defense configurations of a real-world system. Second, we reason about hypothetical defense bypasses. We prove by construction that attack extensions implementing the hypothesized functionality are possible even if a 'perfect' version of the defense is implemented. Our approach can be used to formalize the process of threat model definition, analyze defense configurations, reason about composability and efficacy, and hypothesize about new attacks and defenses.
READ LESS

Summary

Since the introduction of return-oriented programming, increasingly compiles defenses and subtle attacks that bypass them have been proposed. Unfortunately the lack of a unifying threat model among code reuse security papers makes it difficult to evaluate the effectiveness of defenses, and answer critical questions about the interoperability, composability, and efficacy...

READ MORE

Flux-charge duality and topological quantum phase fluctuations in quasi-one-dimensional superconductors

Published in:
New J. Phys., Vol. 15, 2013, 105017.

Summary

It has long been thought that macroscopic phase coherence breaks down in effectively lower-dimensional superconducting systems even at zero temperature due to enhanced topological quantum phase fluctuations. In quasi-one-dimensional wires, these fluctuations are described in terms of 'quantum phase-slip' (QPS): tunneling of the superconducting order parameter for the wire between states differing by plus or minus 2 pi in their relative phase between the wire's ends. Over the last several decades, many deviations from conventional bulk superconducting behavior have been observed in ultra-narrow superconducting nanowires, some of which have been identified with QPS. While at least some of the observations are consistent with existing theories for QPS, other observations in many cases point to contradictory conclusions or cannot be explained by these theories. Hence, our understanding of the nature of QPS, and its relationship to the various observations, has remained incomplete. In this paper we present a new model for QPS which takes as its starting point an idea originally postulated by Mooij and Nazarov (2006 Nature Phys. 2 169): that flux-charge duality, a classical symmertry of Maxwell's equations, can be used to relate QPS to the well-known Josephson tunneling of Cooper pairs. Our model provides an alternative, and qualitatively different, conceptual basis for QPS and the phenomena which arise from it in experiments, and it appears to permit for the first time a unified understanding of observations across several different types of experiments and materials systems.
READ LESS

Summary

It has long been thought that macroscopic phase coherence breaks down in effectively lower-dimensional superconducting systems even at zero temperature due to enhanced topological quantum phase fluctuations. In quasi-one-dimensional wires, these fluctuations are described in terms of 'quantum phase-slip' (QPS): tunneling of the superconducting order parameter for the wire between...

READ MORE

Dual-polarization challenges in weather radar requirements for multifunction phased array radar

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

This paper summarizes the challenges in achieving (and even specifying) the antenna polarization accuracy requirements for the Multifunction Phased Array Radar (MPAR) and the progress that has been made towards meeting these requirements through demonstrations and theoretical investigations.
READ LESS

Summary

This paper summarizes the challenges in achieving (and even specifying) the antenna polarization accuracy requirements for the Multifunction Phased Array Radar (MPAR) and the progress that has been made towards meeting these requirements through demonstrations and theoretical investigations.

READ MORE

Low cost phased array radar for applications in engineering education

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

Hands-on instruction in engineering education is beneficial to the development of a workforce that understands the complexity of building radar systems. Unfortunately, building phased array systems tends to be too costly to allow student access to the hardware necessary for developing these skills. This paper presents a low cost phased array based on a time-domain multiplexed, multiple-input, multiple-output (TDM-MIMO) approach that has been built for education. This array has been utilized in several free courses held at the Massachusetts Institute of Technology during the Independent Activity Period (IAP) between semesters. Students have built, tested, and taken home a number of these radars and continue to operate these on their own, either for recreation or as part of their undergraduate research activities.
READ LESS

Summary

Hands-on instruction in engineering education is beneficial to the development of a workforce that understands the complexity of building radar systems. Unfortunately, building phased array systems tends to be too costly to allow student access to the hardware necessary for developing these skills. This paper presents a low cost phased...

READ MORE

On the development of a tileable LRU for the NextGen surveillance and weather radar capability program

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

MIT Lincoln Laboratory is working towards the development of a tileable radar panel to satisfy multimission needs. A combination of custom and commercial off-the-shelf (COTS) Monolithic Microwave Integrated Circuits (MMICs) have been developed and/or employed to achieve the required system functionality. The integrated circuits (ICs) are integrated into a low cost T/R module compatible with commercial printed circuit board (PCB) manufacturing. Sixty-four of the transmit/receive (T/R) modules are integrated onto the aperture PCB in an 8x8 lattice. In addition to the T/R elements, the aperture PCB incorporates transmit and receive beamformers, power and logic distribution, and radiating elements. The aperture PCB is coupled with a backplane PCB to form a panel, the line replaceable unit (LRU) for the multifunction phased array radar (MPAR) initiative. This report summarizes the evaluation of the second iteration LRU aperture PCB and T/R element. Support fixturing was developed and paired with the panel to enable backplane functionality sufficient to support the test objective.
READ LESS

Summary

MIT Lincoln Laboratory is working towards the development of a tileable radar panel to satisfy multimission needs. A combination of custom and commercial off-the-shelf (COTS) Monolithic Microwave Integrated Circuits (MMICs) have been developed and/or employed to achieve the required system functionality. The integrated circuits (ICs) are integrated into a low...

READ MORE

Multi-lithic phased array architecture for airborne sense and avoid radar

Summary

Transmit and receive Ku-band phased array designs are described for testing an airborne sense and avoid radar. The arrays are small with a size of 24 cm x 9 cm and operate from 13 to 17 GHz with electronic scanning from plus of minus 45 degrees in azimuth and plus of minus 30 degrees in elevation. A novel design architecture allows the use of multiple multilayered printed circuit boards and simple air cooling.
READ LESS

Summary

Transmit and receive Ku-band phased array designs are described for testing an airborne sense and avoid radar. The arrays are small with a size of 24 cm x 9 cm and operate from 13 to 17 GHz with electronic scanning from plus of minus 45 degrees in azimuth and plus...

READ MORE