Publications
High power (>5 W) lambda ~9.6 um tapered quantum cascade lasers grown by OMVPE
Summary
Summary
AlInAS/GaInAs superlattices (SLs) with barrier and well layers of various thicknesses were grown by organometallic vapor phase epitaxy to optimize growth of quantum cascade lasers (QCLs). High-resolution x-ray diffraction data of nominally lattice-matched SLs show a systematic shift toward more compressively strained SLs as the barrier/well layer thicknesses are decreased...
High voltage GaN-on-silicon HEMT
Summary
Summary
M/A-COM Technology Solutions has continued in the joint development efforts sponsored by the Department of Energy with MIT main campus amd MIT Lincoln Labs to develop GaN on silicon three terminal high voltage/high current HEMT switching devices. The first year developmental goals were for a three terminal structure that has...
Gadolinium oxide coated fully depleted silicon-on-insulator transistors for thermal neutron dosimetry
Summary
Summary
Fully depleted silicon-on-insulator transistors coated with gadolinium oxide are shown to be effective thermal neutron dosimeters. The theoretical neutron detection efficiency is calculated to be higher for Gd2O3 than for other practical converter materials. Proof-of-concept dosimeter devices were fabricated and tested during thermal neutron irradiation. The transistor current changes linearly...
LLGrid: supercomputer for sensor processing
Summary
Summary
MIT Lincoln Laboratory is a federally funded research and development center that applies advanced technology to problems of national interest. Research and development activities focus on long-term technology development as well as rapid system prototyping and demonstration. A key part of this mission is to develop and deploy advanced sensor...
Architecture-independent dynamic information flow tracking
Summary
Summary
Dynamic information flow tracking is a well-known dynamic software analysis technique with a wide variety of applications that range from making systems more secure, to helping developers and analysts better understand the code that systems are executing. Traditionally, the fine-grained analysis capabilities that are desired for the class of these...
Etching selectivity of indium tin oxide to photoresist in high density chlorine- and ethylene-containing plasmas
Summary
Summary
Etching of indium tin oxide (ITO) thin films in high density chlorine plasmas is studied, with the goal of increasing the etching selectivity to photoresist. The ITO etching rate increases with ethylene addition, but is not affected by BCl3 addition. ITO exhibits a threshold energy for ion etching, whereas the...
Reconfigurable RF systems using commercially available digital capacitor arrays
Summary
Summary
Various RF circuit blocks implemented by using commercially available MEMS digital capacitor arrays are presented for reconfigurable RF systems. The designed circuit blocks are impedance-matching network, tunable bandpass filter, and VSWR sensor. The frequency range of the designed circuits is 0.4-4GHz. The MEMS digital capacitor arrays that are employed in...
Risk-based modeling to support NextGen concept assessment and validation
Summary
Summary
This report provides a brief review of major risk-based modeling (RBM) approaches, with particular emphasis on how these tools can be applied during initial Next Generation Air Transportation System (NextGen) concept development and how their use can be validated. Effective safety analysis should play a role even during a new...
RECOG: Recognition and Exploration of Content Graphs
Summary
Summary
We present RECOG (Recognition and Exploration of COntent Graphs), a system for visualizing and interacting with speaker content graphs constructed from large data sets of speech recordings. In a speaker content graph, nodes represent speech signals and edges represent speaker similarity. First, we describe a layout algorithm that optimizes content...
High-power arrays of quantum cascade laser master-oscillator power-amplifiers
Summary
Summary
We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 um. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays...