Publications

Refine Results

(Filters Applied) Clear All

Reconfigurable RF systems using commercially available digital capacitor arrays

Published in:
38th Annual GOMACTech Conf., 11-14 March 2013.

Summary

Various RF circuit blocks implemented by using commercially available MEMS digital capacitor arrays are presented for reconfigurable RF systems. The designed circuit blocks are impedance-matching network, tunable bandpass filter, and VSWR sensor. The frequency range of the designed circuits is 0.4-4GHz. The MEMS digital capacitor arrays that are employed in the designs have built-in dc-to-dc voltage converter and serial interface significantly simplifying the control circuitry. The RF circuit blocks are suitable to low-cost, high-level of integration, thanks to the commercially available parts and standard RF packaging technologies.
READ LESS

Summary

Various RF circuit blocks implemented by using commercially available MEMS digital capacitor arrays are presented for reconfigurable RF systems. The designed circuit blocks are impedance-matching network, tunable bandpass filter, and VSWR sensor. The frequency range of the designed circuits is 0.4-4GHz. The MEMS digital capacitor arrays that are employed in...

READ MORE

Risk-based modeling to support NextGen concept assessment and validation

Published in:
MIT Lincoln Laboratory Report ATC-405
Topic:

Summary

This report provides a brief review of major risk-based modeling (RBM) approaches, with particular emphasis on how these tools can be applied during initial Next Generation Air Transportation System (NextGen) concept development and how their use can be validated. Effective safety analysis should play a role even during a new system's concept definition and development. Elements of NextGen are currently progressing through these early phases. NextGen will increasingly rely on integrating multiple systems and information together to enable improved efficiency, safety, and reduced environmental impact. Ensuring that such complex interconnected systems are developed to meet safety goals requires corresponding advances in RBM and safety assessment approaches. This report does not cover the more detailed safety analyses that must be applied to mature system concepts. Rather, the focus is on approaches for hazard identification, scoping, and coarse risk estimation for systems in the early conceptual development stage, when details on the design and operation of the system have yet to be resolved. Risk models applied is this constrained context cannot be expected to provide the same complete, quantitative results as they do for mature systems. Following a review of prior models, this report continues with recommendations for RBM development, application, validation, and coordination between NextGen efforts. Also, a discussion on safety and concept development is provided.
READ LESS

Summary

This report provides a brief review of major risk-based modeling (RBM) approaches, with particular emphasis on how these tools can be applied during initial Next Generation Air Transportation System (NextGen) concept development and how their use can be validated. Effective safety analysis should play a role even during a new...

READ MORE

RECOG: Recognition and Exploration of Content Graphs

Published in:
Pacific Vision, 26 February - March 1, 2013.

Summary

We present RECOG (Recognition and Exploration of COntent Graphs), a system for visualizing and interacting with speaker content graphs constructed from large data sets of speech recordings. In a speaker content graph, nodes represent speech signals and edges represent speaker similarity. First, we describe a layout algorithm that optimizes content graphs for ease of navigability. We then present an interactive tool set that allows an end user to find and explore interesting occurrences in the corpus. We also present a tool set that allows a researcher to visualize the shortcomings of current content graph generation algorithms. RECOG's layout and toolsets were implemented as Gephi plugins [1].
READ LESS

Summary

We present RECOG (Recognition and Exploration of COntent Graphs), a system for visualizing and interacting with speaker content graphs constructed from large data sets of speech recordings. In a speaker content graph, nodes represent speech signals and edges represent speaker similarity. First, we describe a layout algorithm that optimizes content...

READ MORE

High-power arrays of quantum cascade laser master-oscillator power-amplifiers

Published in:
Opt. Express, Vol. 21, No. 4, 25 February 2013, pp. 4518-4530.

Summary

We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 um. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.
READ LESS

Summary

We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 um. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays...

READ MORE

Wind information requirements for NextGen applications phase 1: 4D-trajectory based operations (4D-TBO)

Published in:
MIT Lincoln Laboratory Report ATC-399

Summary

Accurate wind information is required to support some of the key applications envisioned for future air traffic concepts. A Wind Information Analysis Framework has been developed to assess wind information needs for different applications. The framework is described and then applied in a Four-Dimensional Trajectory Based Operations (4D-TBO) application using simplified versions of the framework's elements to demonstrate its utility. Realistic ranges of wind information accuracy in terms of wind forecast and Flight Management System wind representation errors are studied. Their impacts on 4D-TBO performance in terms of Required Time of Arrival compliance and fuel burn are presented. Interpretations of the findings to give insights on wind information requirements are provided, together with an outline of the planned next phase of the study to further refine the outputs.
READ LESS

Summary

Accurate wind information is required to support some of the key applications envisioned for future air traffic concepts. A Wind Information Analysis Framework has been developed to assess wind information needs for different applications. The framework is described and then applied in a Four-Dimensional Trajectory Based Operations (4D-TBO) application using...

READ MORE

Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles

Published in:
J. Appl. Phys., Vol. 113. No. 5, 7 February 2013, 053107.

Summary

Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above ~50 MW/cm^2. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficients for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.
READ LESS

Summary

Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above ~50 MW/cm^2. Due to...

READ MORE

Development of adaptive liquid microlenses and microlens arrays

Published in:
SPIE Photonics West 2013: MOEMS-MEMS, 2-7 February 2013.

Summary

We report on the development of sub-millimeter size adaptive liquid microlenses and microlens arrays using two immiscible liquids to form individual lenses. Microlenses and microlens arrays having aperture diameters as small as 50 microns were fabricated on a planar quartz substrate using patterned hydrophobic/hydrophilic regions. Liquid lenses were formed by a self-assembled oil dosing process that created well-defined lenses having a high fill factor. Variable focus was achieved by controlling the lens curvature through electrowetting. Greater than 70 degrees of contact angle change was achieved with less than 20 volts, which results in a large optical power dynamic range.
READ LESS

Summary

We report on the development of sub-millimeter size adaptive liquid microlenses and microlens arrays using two immiscible liquids to form individual lenses. Microlenses and microlens arrays having aperture diameters as small as 50 microns were fabricated on a planar quartz substrate using patterned hydrophobic/hydrophilic regions. Liquid lenses were formed by...

READ MORE

Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm^-1 surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (<20 mW) CW diode lasers

Published in:
Appl. Spectrosc., Vol. 67, No. 2, February 2013, pp. 132-135.

Summary

The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm^-1 SERS mode. A value of 9.6 +- 1.7 x 10^-14 W was determined for the resonant component of the SECARS signal using 17.8 mW of 784.9 nm pump laser power and 7.1 mW of 895.5 nm Stokes laser power; the pump and Stokes lasers were polarized parallel to each other but perpendicular to the grooves of the diffraction grating in the spectrometer. The measured value of resonant component of the SECARS signal is in agreement with the calculated value of 9.3 x 10^-14 W using the measured value of 8.7 +- 0.5 cm^-1 for the SERS linewidth Gamma (full width at half-maximum) and the value of 5.7 +- 1.4 x 10^-7 for the product of the Raman cross section rSERS and the surface concentration Ns of the benzenethiol SAM. The xxxx component of the resonant part of the third-order nonlinear optical susceptibility |3X (3)R/xxxx| for the 1574 cm^-1 SERS mode has been determined to be 4.3 +- 1.1 x 10^-5 cm g^-1 s^2. The SERS enhancement factor for the 1574 cm^-1 mode was determined to be 3.6 +- 0.9 x 10^7 using the value of 1.8 x 10^15 molecules/cm^2 for Ns.
READ LESS

Summary

The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm^-1 SERS mode. A value of 9.6 +- 1.7 x 10^-14 W was determined for the resonant component of the SECARS signal...

READ MORE

Taming biological big data with D4M

Published in:
Lincoln Laboratory Journal, Vol. 20, No. 1, 2013, pp. 82-91.

Summary

The supercomputing community has taken up the challenge of "taming the beast" spawned by the massive amount of data available in the bioinformatics domain: How can these data be exploited faster and better? MIT Lincoln Laboratory computer scientists demonstrated how a new Laboratory-developed technology, the Dynamic Distributed Dimensional Data Model (D4M), can be used to accelerate DNA sequence comparison, a core operation in bioinformatics.
READ LESS

Summary

The supercomputing community has taken up the challenge of "taming the beast" spawned by the massive amount of data available in the bioinformatics domain: How can these data be exploited faster and better? MIT Lincoln Laboratory computer scientists demonstrated how a new Laboratory-developed technology, the Dynamic Distributed Dimensional Data Model...

READ MORE

Detection theory for graphs

Summary

Graphs are fast emerging as a common data structure used in many scientific and engineering fields. While a wide variety of techniques exist to analyze graph datasets, practitioners currently lack a signal processing theory akin to that of detection and estimation in the classical setting of vector spaces with Gaussian noise. Using practical detection examples involving large, random "background" graphs and noisy real-world datasets, the authors present a novel graph analytics framework that allows for uncued analysis of very large datasets. This framework combines traditional computer science techniques with signal processing in the context of graph data, creating a new research area at the intersection of the two fields.
READ LESS

Summary

Graphs are fast emerging as a common data structure used in many scientific and engineering fields. While a wide variety of techniques exist to analyze graph datasets, practitioners currently lack a signal processing theory akin to that of detection and estimation in the classical setting of vector spaces with Gaussian...

READ MORE