Publications

Refine Results

(Filters Applied) Clear All

Airport Surveillance Radar (ASR-9) Wind Shear Processor - 1991 Test at Orlando, Florida

Author:
Published in:
MIT Lincoln Laboratory Report ATC-189

Summary

An operational test of a Wind Shear Processor (WSP) add-on to the Federal Aviation Administration's airport surveillance radar (ASR-9) took place at Orlando International Airport during July and August 1991. The test allowed for both quantitative assessment of the WSP's signal processing and wind shear detection algorithms and for feedback from air traffic controllers and their supervisors on the strengths and weaknesses of the system. Thunderstorm activity during the test period was intense; low-altitude wind shear impacted the runways or approach/departure corridors on 40 of the 53 test days. As in previous evaluations of the WSP in the southeastern United States, microburst detection performance was very reliable. Over 95% of the strong microbursts that affected the Orlando airport during the test period were detected by the system. Gust front detection during the test, while operationally useful, was not as reliable as it should have been, given the quality of gust front signatures in the base reflectivity and radial velocity data from the WSP. Subsequent development of a Machine Intelligent gust front algorithm has resulted in significantly improved detection capability. Results from the operational test are being utilized in ongoing refinement of the WSP.
READ LESS

Summary

An operational test of a Wind Shear Processor (WSP) add-on to the Federal Aviation Administration's airport surveillance radar (ASR-9) took place at Orlando International Airport during July and August 1991. The test allowed for both quantitative assessment of the WSP's signal processing and wind shear detection algorithms and for feedback...

READ MORE

A comparison of the performance of two gust front detection algorithms using a length-based scoring technique

Published in:
MIT Lincoln Laboratory Report ATC-185

Summary

The Terminal Doppler Weather Radar (TDWR) Gust Front Algorithm provides, as products, estimates of the current locations of gust fronts, their future locations, the wind speed and sirection behind the gust fronts, and the wind shear hazard to landing or departing aircraft. These products are used by air traffic controllers and supervisors to warn pilots of potentially hazardous wind shears during take-off and landing and to plan runway reconfigurations. Until recently, an event-based scoring system was used to evaluate the performance of the algorithm. With the event-based scoring scheme, if any part of a gust front length was detected, a valid detection was declared. Unfortunately, this scheme gave no indication of how much of the gust front length was detected; nor could the probabilities be easily related to the probability of issuing a wind shear alert for a specific approach or departure path which was being impacted by a gust front. To make the scoring metric more nearly reflect the operational use of the product, a new length-based scoring scheme was devised. This scheme computes the length of the gust front detected by the algorithm. When computed over a large number of gust fronts, this length-based scoring scheme yields the probability that any part of the gust front will be detected. As improvements to the algorithm increase the length detected, the probability of detecting any part of a gust front increases. In particular, an improved algorithm means an increased probability of correctly issuing wind shear alerts for the runways impacted by a gust front, and length-based scoring is a more accurate technique for assessing this probability of detection. This paper describes the length-based scoring scheme and compares it with event-based scoring of the algorithm's gust front detection and forecast performance. The comparison of the scoring methods shows that recent enhancements to the gust front algorithm provide a substantial, positive impact on performance.
READ LESS

Summary

The Terminal Doppler Weather Radar (TDWR) Gust Front Algorithm provides, as products, estimates of the current locations of gust fronts, their future locations, the wind speed and sirection behind the gust fronts, and the wind shear hazard to landing or departing aircraft. These products are used by air traffic controllers...

READ MORE

Terminal Doppler Weather Radar test bed operation, Orlando, January - June 1990

Published in:
MIT Lincoln Laboratory Report ATC-180

Summary

This semiannual report for the Terminal Doppler Weather Radar program, sponsored by the Federal Aviation Administration (FAA), covers the period from 1 January 1990 through 30 June 1990. The principal activity of this period was the transport and reassembly of the FL-2 weather radar test site from Kansas City, MO to Orlando, FL and the change of radar frequency from S-band used in Kansas City to C-band for Orlando operations. Site operations to prepare the FL-2C radar site for summer testing began in January and continued through May, when testing began. This report describes the RF hardware, the data collection, the computer systems at site, and the networks between Orlando, FL and Lexington, MA. Also included are discussions of the microburst and gust front algorithm development, data collection, display terminals, and training for Air Traffic Control (ATC) supervisors and controllers.
READ LESS

Summary

This semiannual report for the Terminal Doppler Weather Radar program, sponsored by the Federal Aviation Administration (FAA), covers the period from 1 January 1990 through 30 June 1990. The principal activity of this period was the transport and reassembly of the FL-2 weather radar test site from Kansas City, MO...

READ MORE

Analysis of the Terminal Doppler Weather Radar algorithm for detecting rotation associated with microbursts

Author:
Published in:
MIT Lincoln Laboratory Report ATC-183

Summary

Rotating winds aloft occurring with downdrafts often are associated with microbursts, which are serious aviation hazards. The Terminal Doppler Weather Radar system detects microbursts and warns pilots of windshear events, partly by its use of rotation as precursors. The role of the rotation region detection algorithm in this system is described, and the improvements to it are analyzed using measured data and simulated rotation regions. The final results show a substantial overall decrease in the number of false detections generated by the algorithm due to adjustment of thresholds and additional logic, while still retaining a good probability of microburst rotation region detection (84 percent). Ideas for future enhancement are explored through techniques such as discriminant analysis and environmental wind filtering.
READ LESS

Summary

Rotating winds aloft occurring with downdrafts often are associated with microbursts, which are serious aviation hazards. The Terminal Doppler Weather Radar system detects microbursts and warns pilots of windshear events, partly by its use of rotation as precursors. The role of the rotation region detection algorithm in this system is...

READ MORE

Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing

Author:
Published in:
MIT Lincoln Laboratory Report ATC-171

Summary

The Lincoln Laboratory Terminal Doppler Weather Radar (TDWR) testbed was used to carry out an experimental and operational hazardous weather product evaluation program for the Federal Aviation Administration (FAA) at the Kansas City International (KCI) Airport during the summer of 1989. The objective of the program was to test and refine previously tested techniques for the automatic detection of low-altitude wind shear phenomena (specifically microbursts and gust fronts) and heavy precipitation in a midwest weather environment, as well as to assess possible new products such as storm movement predictions. A successful operational evaluation of the TDWR products took place at the KCI tower and terminal radar control room (TRACON) from 15 July to 15 August 1989 and from 15 to 30 September 1989. Several supervisor and controller display refinements that had been determined from the 1988 operational evaluation at Denver were assessed as effective. The system was successful in terms of aircraft at KCI avoiding wind shear encounters during the operational period, and it was assessed as "very good" in usefulness for continuing operation by the KCI air traffic control (ATC) personnel.
READ LESS

Summary

The Lincoln Laboratory Terminal Doppler Weather Radar (TDWR) testbed was used to carry out an experimental and operational hazardous weather product evaluation program for the Federal Aviation Administration (FAA) at the Kansas City International (KCI) Airport during the summer of 1989. The objective of the program was to test and...

READ MORE

Contributions to the American Meterorological Society 16th Conference on Severe Local Storms

Published in:
MIT Lincoln Laboratory Report ATC-173

Summary

Eight papers contributed by the Lincoln Laboratory Weather Sensing Group to the American Meteorological Society's 16th Conference on Severe Local Storms, to be held October 22-26, 1990 in Kananaskis Provincial Park, Alberta, Canada, are compiled in this volume. The FAA sponsored the summer 1989 field test of the Terminal Doppler Weather Radar (TDWR) system in Kansas City, Missouri to detect wind shear aviation hazards at or near the airport. The papers are based on data collected through the summer 1989 field test and on subsequent analyses and product evaluation. The staff members of Group 43, Weather Sensing, have documented their studies of the following topics: a severe microburst; a prototype microburst prediction product; average summer microburst threat prediction at an airport; microburst asymmetry; the effect of radar viewing angle on the performance of the gust front detection algorithm; a comparison of Low-Level Wind Shear Alert System (LLWAS) anemometer-measured winds and Doppler-measured winds; and ASR-9 (Airport Surveillance Radar) adjustment of range-dependent storm reflectivity levels. The final paper is an invited paper for the Conference on microbursts. This paper discusses the precipitation-driven downdraft and the downdraft associated with the "vortex," or gust front, at the leading edge of an expanding thunderstorm outflow as two primary forms of low altitude downdraft phenomena in the microburst problem.
READ LESS

Summary

Eight papers contributed by the Lincoln Laboratory Weather Sensing Group to the American Meteorological Society's 16th Conference on Severe Local Storms, to be held October 22-26, 1990 in Kananaskis Provincial Park, Alberta, Canada, are compiled in this volume. The FAA sponsored the summer 1989 field test of the Terminal Doppler...

READ MORE

Microburst observability and frequency during 1988 in Denver, CO

Published in:
MIT Lincoln Laboratory Report ATC-170

Summary

The observability of microbursts with single-Doppler radar is investigated through comparison of radar data and surface weather sensor data. The data were collected during 1988 in Denver, CO as part of the FAA Terminal Doppler Weather Radar measurement program. Radar data were collected by both and S-band and C-band radar, while surface data were taken from a mesoscale network of 42 weather sensors in the vicinity of Denver's Stapleton International Airport. Results are compared with previous similar studies of observability using data from 1987 in Denver, and 1986 in Huntsville, AL. A total of 184 microbursts impacting the surface mesonet were identified. For those microbursts for which both radar and surface data were available, 97% were observable by single-Doppler radar. This compares to 94% observability during 1987 in Denver, and 98% during 1986 in Huntsville. Two strong microbursts (at lease 20 m/s differential velocity) were unobservable by radar throughout their lifetime: one due to low signal-to-noise ratio, and the other due initially to an asymmetric outflow with low signal-to-noise ratio also a contributing factor. Two other microbursts, with differential velocities from 10-19 m/s, were unobservable by radar: one due to shallow outflow with a depth limited to a height below that of the radar beam, and one due to asymmetric outflow oriented unfavorably with respect to the radar viewing angle. Consistent with previous observations, microburst occurrence was most frequent during June and July, when 94 microbursts were identified on 20 days. An anomalously high frequency was also seen in April, although the strength of these events was relatively modest. As expected, the diurnal distribution shows the late afternoon to be the most favorable time for microburst development; more than half of all events reached their maximum strength between the hours of 2-5 p.m. local time.
READ LESS

Summary

The observability of microbursts with single-Doppler radar is investigated through comparison of radar data and surface weather sensor data. The data were collected during 1988 in Denver, CO as part of the FAA Terminal Doppler Weather Radar measurement program. Radar data were collected by both and S-band and C-band radar...

READ MORE

A preliminary study of precursors to Huntsville microbursts

Published in:
MIT Lincoln Laboratory Report ATC-153

Summary

Lincoln Laboratory under the sponsorship of the FAA is currently developing automated algorithms for the detection of wind shears such as microbursts and gust fronts. Previous studies have shown that these outflows can be hazardous to an airplance during takeoffs and landings. The ultimate goal of a microburst detection algorithm is the timely warning of potentially hazardous wind shears through the detection of reliable precursors. Research in Colorado and Oklahoma documented the significance of precursors such as descending reflectivity cores, convergence, rotation, and reflectivity notching as indicators that a microburst will occur in the very near future. The overall importance of an individual feature varies between regions. This investiagtion will focus on those precursors which play a dominant role in the formation of wet microbursts in the southern United States. The data analyzed in this report was gathered by the FAA TDWR S-band Doppler radar during 1985 and 1986 in Memphis, Tennessee, and Hunstville, Alabama.
READ LESS

Summary

Lincoln Laboratory under the sponsorship of the FAA is currently developing automated algorithms for the detection of wind shears such as microbursts and gust fronts. Previous studies have shown that these outflows can be hazardous to an airplance during takeoffs and landings. The ultimate goal of a microburst detection algorithm...

READ MORE

A comparison of PAM-II and FLOWS mesonet data during COHMEX

Published in:
MIT Lincoln Laboratory Report ATC-154

Summary

Surface weather stations are being used in the Terminal Doppler Weather Radar program to assess the radar detectibility of wind shear and to help gain an understanding of microburst forcing mechanisms. During 1986, surface station networks operated by Lincoln Laboratory (FLOWS) and the National Center for Atmonspheric Research (PAM-II) were deployed in the Huntsville, AL area. A preliminary assessment of the overall performance of PAM-II and FLOWS networks suggests that they performed with comparable accuracy for those meterological characteristics most important to the detection of microbursts. While differences and discrepancies were noted, especially in the network total precipitation amounts, none would preclude treating PAM-II and FLOWS data together as if they were generated by a single network. We condlcue that the data can be directly combined for microburst detection analyses.
READ LESS

Summary

Surface weather stations are being used in the Terminal Doppler Weather Radar program to assess the radar detectibility of wind shear and to help gain an understanding of microburst forcing mechanisms. During 1986, surface station networks operated by Lincoln Laboratory (FLOWS) and the National Center for Atmonspheric Research (PAM-II) were...

READ MORE

Spatial and temporal analysis of weather radar reflectivity images

Author:
Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, 6-9 April 1987, pp. 606-609.

Summary

This paper illustrates the use of a primitive symbolic description of an image to obtain more robust identification of amorphous objects than would be possible with more conventional edge or gradient-based segmentation techniques. An algorithm is described which uses a simple multi-level thresholding operation to form a symbolic representation of weather radar reflectivity images. This representation allows the use of detailed rules for the detection and quantification of the image features. A method is described for using this information to identify significant intensity peaks in an image, and examples of its performance are shown.
READ LESS

Summary

This paper illustrates the use of a primitive symbolic description of an image to obtain more robust identification of amorphous objects than would be possible with more conventional edge or gradient-based segmentation techniques. An algorithm is described which uses a simple multi-level thresholding operation to form a symbolic representation of...

READ MORE