Publications

Refine Results

(Filters Applied) Clear All

PVL: An Object Oriented Software Library for Parallel Signal Processing (Abstract)

Published in:
CLUSTER '01, 2001 IEEE Int. Conf. on Cluster Computing, 8-11 October 2001, p. 74.

Summary

Real-time signal processing consumes the majority of the world's computing power Increasingly, programmable parallel microprocessors are used to address a wide variety of signal processing applications (e.g. scientific, video, wireless, medical, communication, encoding, radar, sonar and imaging). In programmable systems the major challenge is no longer hardware but software. Specifically, the key technical hurdle lies in mapping (i.e., placement and routing) of an algorithm onto a parallel computer in a general manner that preserves software portability. We have developed the Parallel Vector Library (PVL) to allow signal processing algorithms to be written using high level Matlab like constructs that are independent of the underlying parallel mapping. Programs written using PVL can be ported to a wide range of parallel computers without sacrificing performance. Furthermore, the mapping concepts in PVL provide the infrastructure for enabling new capabilities such as fault tolerance, dynamic scheduling and self-optimization. This presentation discusses PVL with particular emphasis on quantitative comparisons with standard parallel signal programming practices.
READ LESS

Summary

Real-time signal processing consumes the majority of the world's computing power Increasingly, programmable parallel microprocessors are used to address a wide variety of signal processing applications (e.g. scientific, video, wireless, medical, communication, encoding, radar, sonar and imaging). In programmable systems the major challenge is no longer hardware but software. Specifically...

READ MORE

Circuit-fed tile-approach configuration for millimeter-wave spatial power combining

Published in:
IEEE Trans. Microw. Theory Tech., Vol. 50, No. 1, Part 1, January 2002, pp. 17-21.

Summary

In this paper, a circuit-fed spatially combined transmitter array is described for operation at 44 GHz. The array contains 256 elements where each element consists of a monolithic-microwave integrated-circuit amplifier and a circularly polarized microchip patch antenna. The array is constructed using 16-element tile-approach subarrays. Each subarray is a two RF-level (three-dimensional) multichip module containing integrated microstrip patch antennas. The basic construction of the transmitter array resembles tile-approach phased arrays; however, the implementation has been tailored for the power-combining application. The peak performance at 43.5 GHz is equivalent isotropic radiated power of 40.6 dBW (11570 W), effective transmitted power (Peff) of 5.9 W, dc-to-RF efficiency of 7.3%, and system gain of 35 dB.
READ LESS

Summary

In this paper, a circuit-fed spatially combined transmitter array is described for operation at 44 GHz. The array contains 256 elements where each element consists of a monolithic-microwave integrated-circuit amplifier and a circularly polarized microchip patch antenna. The array is constructed using 16-element tile-approach subarrays. Each subarray is a two...

READ MORE

Analysis of delay causality at Newark International Airport

Published in:
4th USA/Europe Air Traffic Management R&D Seminar, 3-7 December 2001.

Summary

Determining causes of aviation delay is essential for formulating and evaluating approaches to reduce air traffic delays. An analysis was conducted of large weather-related delays at Newark International Airport (EWR), which, located in the heart of the congested northeast corridor of the United States, is an airport with a significant number of delays. Convective weather and reduced ceiling and visibility were found to be the leading contributors to large delays at EWR between September 1998 and August 2001. It was found that 41% of the cumulative arrival delay (delay relative to schedule) on days in this period averaging more than 15 minutes of delay per arrival occurred on days characterized by convective weather either within or at considerable distances from the New York terminal area. Of the remaining delays, 28% occurred on days characterized by low ceiling/visibility conditions, while 14% occurred on fair weather days with high surface winds, and 2% were caused by distant non-convective storms. Known causes other than weather accounted for 9% of the delays, and causes were unknown for 6%. When delay types (airborne, gate, taxi -out etc.) were categorized by the type of weather causing the delay, it was found that: (1) departure delays (gate + taxi-out) were much larger than arrival delays for thunderstorms in the NY terminal area and (2) taxi-out delays were the dominant type when delays were caused by distant convective weather. The fraction of total delay time explained by pre-planned Ground Delay Programs (GDP) rose sharply during 2000, accounting for over 40% of total the arrival delay that year, and then decreased slightly in 2001. On days with thunderstorms in the NY TRACON, arrival and departure delays were significantly higher during the year (2000) that GDPs were used most frequently.
READ LESS

Summary

Determining causes of aviation delay is essential for formulating and evaluating approaches to reduce air traffic delays. An analysis was conducted of large weather-related delays at Newark International Airport (EWR), which, located in the heart of the congested northeast corridor of the United States, is an airport with a significant...

READ MORE

Tactical convective weather decision support to complement "strategic" traffic flow management for convective weather

Author:
Published in:
46th Annual Air Traffic Control Association Conf. Proc., 4-8 November 2001, pp. 98-102.

Summary

Delay increases during the months of the year characterized by thunderstorms have been the principal cause of the dramatic delay growth in the US aviation system over the past 3 years, as shown in Figure 1. In 2000, the key new initiative for reducing these convective weather delays was "strategic" traffic flow management (TFM) through the Collaborative Convective Forecast Product (CCFP), the Strategic Planning Team, and Collaborative Routing (CR). This "strategic" approach has been quite successful in improving operations. However, in congested airspace, the inability to accurately forecast convective weather impacts requires a complementary tactical weather decision support capability. This paper describes terminal and enroute weather prediction systems plus traffic flow management and automation decision support tools to complement the strategic approach.
READ LESS

Summary

Delay increases during the months of the year characterized by thunderstorms have been the principal cause of the dramatic delay growth in the US aviation system over the past 3 years, as shown in Figure 1. In 2000, the key new initiative for reducing these convective weather delays was "strategic"...

READ MORE

Speaker recognition from coded speech and the effects of score normalization

Published in:
Proc. Thirty-Fifth Asilomar Conf. on Signals, Systems and Computers, Vol. 2, 4-7 November 2001, pp. 1562-1567.

Summary

We investigate the effect of speech coding on automatic speaker recognition when training and testing conditions are matched and mismatched. Experiments used standard speech coding algorithms (GSM, G.729, G.723, MELP) and a speaker recognition system based on Gaussian mixture models adapted from a universal background model. There is little loss in recognition performance for toll quality speech coders and slightly more loss when lower quality speech coders are used. Speaker recognition from coded speech using handset dependent score normalization and test score normalization are examined. Both types of score normalization significantly improve performance, and can eliminate the performance loss that occurs when there is a mismatch between training and testing conditions.
READ LESS

Summary

We investigate the effect of speech coding on automatic speaker recognition when training and testing conditions are matched and mismatched. Experiments used standard speech coding algorithms (GSM, G.729, G.723, MELP) and a speaker recognition system based on Gaussian mixture models adapted from a universal background model. There is little loss...

READ MORE

Optically sampled analog-to-digital converters

Published in:
IEEE Trans. Microw. Theory Tech., Vol. 49, No. 10, October 2001, pp. 1840-1853.
Topic:

Summary

Optically sampled analog-to-digital converters (ADCs) combine optical sampling with electronic quantization to enhance the performance of electronic ADCs. In this paper, we review the prior and current work in this field, and then describe our efforts to develop and extend the bandwidth of a linearized sampling technique referred to as phase-encoded optical sampling. The technique uses a dual-output electrooptic sampling transducer to achieve both high linearity and 60-dB suppression of laser amplitude noise. The bandwidth of the technique is extended by optically distributing the post-sampling pulses to an array of time-interleaved electronic quantizers. We report on the performance of a 505-MS/s (megasample per second) optically sampled ADC that includes high-extinction LiNbO(3) 1-to-8 optical time-division demultiplexers. Initial characterization of the 505-MS/s system reveals a maximum signal-to-noise ratio of 51 dB (8.2 bits) and a spur-free dynamic range of 61 dB. The performance of the present system is limited by electronic quantizer noise, photodiode saturation, and preliminary calibration procedures. None of these fundamentally limit this sampling approach, which should enable multigigahertz converters with 12-b resolution. A signal-to-noise analysis of the phase-encoded sampling technique shows good agreement with measured data from the 505-MS/s system.
READ LESS

Summary

Optically sampled analog-to-digital converters (ADCs) combine optical sampling with electronic quantization to enhance the performance of electronic ADCs. In this paper, we review the prior and current work in this field, and then describe our efforts to develop and extend the bandwidth of a linearized sampling technique referred to as...

READ MORE

ASR-8/TDX-2000 performance analysis: evaluation of multiple-time-around-detection (MTAD) algorithm and final report

Published in:
MIT Lincoln Laboratory Report ATC-300

Summary

This report documents the analysis of and subsequent improvements to the performance of the ASR-8/TDX-2000 digitizer equipment combination. Working at the FAA's Palm Springs, CA and Williams (Mesa, AZ) ASR-8 facilities, data was methodically collected and analyzed to isolate the causes of reported correlated radar-only tracks that were being dropped or were never initiated. These problems were subsequently fixed via hard and soft parameter changes in the TDX-2000. A significant study was also undertaken in conjunction with the Sensis Corporation to improve the TDX-2000's capability to reject returns from multiple-time-around detections. The details of that algorithm modification and the results of follow-on testing and analysis are described. Final conclusions on the status of the project are also included.
READ LESS

Summary

This report documents the analysis of and subsequent improvements to the performance of the ASR-8/TDX-2000 digitizer equipment combination. Working at the FAA's Palm Springs, CA and Williams (Mesa, AZ) ASR-8 facilities, data was methodically collected and analyzed to isolate the causes of reported correlated radar-only tracks that were being dropped...

READ MORE

Surveillance performance requirements for runway incursion prevention systems

Published in:
MIT Lincoln Laboratory Report ATC-301

Summary

In response to concerns over the number of runway incursions and runway conflicts at U.S. airports, the FAA is sponsoring research and development of safety systems for the airport surface. Two types of safety systems are being actively pursued, a tower cab alerting system and a runway status light system. The tower cab alerting system, called the Airport Movement Area Safety System (AMASS) is currently undergoing initial operational evaluation at several major airports. It provides aural and visual alerts to the tower cab to warn the controllers of potential traffic conflicts. The runway status light system is currently in the development phase, with initial operational suitability demonstrations planned at Dallas/Fort Worth International Airport during FY2003. Intended to offer protection in time-critical conflict scenarios where there is not enough time to warn the aircrews indirectly via the tower cab, the runway status light system provides visual indication of runway status directly to the cockpit; runway entrance lights warn pilots not to enter a runway on which there is approaching high-speed traffic; takeoff-hold lights warn pilots not to start takeoff if a conflict could occur. Both systems operate automatically, requiring no controller inputs. Activation commands for alerts and lights are generated by the systems' safety logic, which in turn receives airport traffic inputs from a surface surveillance and target tracking system. Accurate traffic representation is essential to meet system requirements, which include high conflict detection rate, prompt and accurate alerting and light activation, low nuisance and false alarm rates, and negligible interference with normal operations. This report analyzes the effect of the two fundamental surveillance performance parameters-position accuracy and surveillance update rate - on the performance of three different surface safety systems. The first two are the above-mentioned tower cab alerting and runway status light systems. The third system is a hypothetical cockpit alerting system that delivers alerts directly to the cockpit rather than to the tower cab. The surveillance accuracy and update rate requirements of these three systems are analyzed for three of the most common runway conflict scenarios, using realistic parameter values for aircraft motion. The scenarios are 1) a runway incursion by a taxiing aircraft in front of a departure or arrival, 2) a departure on an occupied runway, and 3) an arrival on an occupied runway. Runway status lights are especially effective at preventing incursions and accidents between takeoff or arrival aircraft and intersection taxi aircraft. Tower cab alerts are effective at alerting controllers to aircraft crossing or on a runway during an arrival. Runway status information provided directly to the cockpit will be required for the case where a previous arrival or a taxi aircraft fails to exit the runway as anticipated shortly before the arrival crossed the threshold. (not complete)
READ LESS

Summary

In response to concerns over the number of runway incursions and runway conflicts at U.S. airports, the FAA is sponsoring research and development of safety systems for the airport surface. Two types of safety systems are being actively pursued, a tower cab alerting system and a runway status light system...

READ MORE

Toward an improved concept-based information retrieval system

Published in:
Proc. of the 24th Annual ACM SIGIR Conf. on Research and Development in Information Retrieval, 9-13 September 2001, pp. 384-385.

Summary

This paper presents a novel information retrieval system that includes 1) the addition of concepts to facilitate the identification of the correct word sense, 2) a natural language query interface, 3) the inclusion of weights and penalties for proper nouns that build upon the Okapi weighting scheme, and 4) a term clustering technique that exploits the spatial proximity of search terms in a document to further improve the performance. The effectiveness of the system is validated by experimental results.
READ LESS

Summary

This paper presents a novel information retrieval system that includes 1) the addition of concepts to facilitate the identification of the correct word sense, 2) a natural language query interface, 3) the inclusion of weights and penalties for proper nouns that build upon the Okapi weighting scheme, and 4) a...

READ MORE

Preliminary speaker recognition experiments on the NATO N4 corpus

Published in:
Proc. Workshop on Multilingual Speech and Language Processing, 8 Spetember 2001.

Summary

The NATO N4 corpus contains speech collected at naval training schools within several NATO countries. The speech utterances comprising the corpus are short, tactical transmissions typical of NATO naval communications. In this paper, we report the results of some preliminary speaker recognition experiments on the N4 corpus. We compare the performance of three speaker recognition systems developed at TNO Human Factors, the US Air Force Research Laboratory, Information Directorate and MIT Lincoln Laboratory on the segment of N4 data collected in the Netherlands. Performance is reported as a function of both training and test data duration. We also investigate the impact of cross-language training and testing.
READ LESS

Summary

The NATO N4 corpus contains speech collected at naval training schools within several NATO countries. The speech utterances comprising the corpus are short, tactical transmissions typical of NATO naval communications. In this paper, we report the results of some preliminary speaker recognition experiments on the N4 corpus. We compare the...

READ MORE