Publications
Weather radar network benefit model for nontornadic thunderstorm wind casualty cost reduction
Summary
Summary
An econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic...
A multi-task LSTM framework for improved early sepsis prediction
Summary
Summary
Early detection for sepsis, a high-mortality clinical condition, is important for improving patient outcomes. The performance of conventional deep learning methods degrades quickly as predictions are made several hours prior to the clinical definition. We adopt recurrent neural networks (RNNs) to improve early prediction of the onset of sepsis using...
Towards a distributed framework for multi-agent reinforcement learning research
Summary
Summary
Some of the most important publications in deep reinforcement learning over the last few years have been fueled by access to massive amounts of computation through large scale distributed systems. The success of these approaches in achieving human-expert level performance on several complex video-game environments has motivated further exploration into...
Leveraging linear algebra to count and enumerate simple subgraphs
Summary
Summary
Even though subgraph counting and subgraph matching are well-known NP-Hard problems, they are foundational building blocks for many scientific and commercial applications. In order to analyze graphs that contain millions to billions of edges, distributed systems can provide computational scalability through search parallelization. One recent approach for exposing graph algorithm...
Hardware foundation for secure computing
Summary
Summary
Software security solutions are often considered to be more adaptable than their hardware counterparts. However, software has to work within the limitations of the system hardware platform, of which the selection is often dictated by functionality rather than security. Performance issues of security solutions without proper hardware support are easy...
Enhanced parallel simulation for ACAS X development
Summary
Summary
ACAS X is the next generation airborne collision avoidance system intended to meet the demands of the rapidly evolving U.S. National Airspace System (NAS). The collision avoidance safety and operational suitability of the system are optimized and continuously evaluated by simulating billions of characteristic aircraft encounters in a fast-time Monte...
GraphChallenge.org triangle counting performance [e-print]
Summary
Summary
The rise of graph analytic systems has created a need for new ways to measure and compare the capabilities of graph processing systems. The MIT/Amazon/IEEE Graph Challenge has been developed to provide a well-defined community venue for stimulating research and highlighting innovations in graph analysis software, hardware, algorithms, and systems...
GraphChallenge.org sparse deep neural network performance [e-print]
Summary
Summary
The MIT/IEEE/Amazon GraphChallenge.org encourages community approaches to developing new solutions for analyzing graphs and sparse data. Sparse AI analytics present unique scalability difficulties. The Sparse Deep Neural Network (DNN) Challenge draws upon prior challenges from machine learning, high performance computing, and visual analytics to create a challenge that is reflective...
A hardware root-of-trust design for low-power SoC edge devices
Summary
Summary
In this work, we introduce a hardware root-of-trust architecture for low-power edge devices. An accelerator-based SoC design that includes the hardware root-of-trust architecture is developed. An example application for the device is presented. We examine attacks based on physical access given the significant threat they pose to unattended edge systems...
Fast training of deep neural networks robust to adversarial perturbations
Summary
Summary
Deep neural networks are capable of training fast and generalizing well within many domains. Despite their promising performance, deep networks have shown sensitivities to perturbations of their inputs (e.g., adversarial examples) and their learned feature representations are often difficult to interpret, raising concerns about their true capability and trustworthiness. Recent...