Publications
Epitaxial graphene transistors on SiC substrates
Summary
Summary
This paper describes the behavior of top-gated transistors fabricated using carbon, specifically epitaxial graphene on SiC, as the active material. Although graphene devices have been built before, in this paper, we provide the first demonstration and systematic evaluation of arrays of a large number of transistors produced using standard microelectronics...
CMOS-compatible dual-output silicon modulator for analog signal processing
Summary
Summary
A broadband, Mach-Zehnder-interferometer based silicon optical modulator is demonstrated, with an electrical bandwidth of 26 GHz and V[pi]L of 4 V·cm. The design of this modulator does not require epitaxial overgrowth and is therefore simpler to fabricate than previous devices with similar performance.
Higher order cochlea-like channelizing filters
Summary
Summary
A design method is presented for contiguous-channel multiplexing filters with many channels covering a wide bandwidth. The circuit topology extends previous work on cochlea-like channelizers by introducing multiple resonator-channel filter sections. The new design provides increased stopband rejection, lower insertion loss, and improved passband shape compared with the earlier version...
Reliable large format arrays of Geiger-mode avalanche photodiodes
Summary
Summary
The fabrication of reliable InP-based Geigermode avalanche photodiode arrays is described. Arrays of up to 256 x 64 elements have been produced and mated to silicon read-out circuits forming single-photon infrared focal plane imagers for 1.06 and 1.5 mum applications.
Geiger-mode quad-cell array for adaptive optics
Summary
Summary
We report an array of Shack-Hartmann wavefront sensors using high-fill-factor Geiger-mode avalanche detector quad cells hybridized to all-digital CMOS counting circuits. The absence of readout noise facilitates fast wavefront sensing at low light levels.
Slab-coupled optical waveguide photodiode
Summary
Summary
We report the first high-current photodiode based on the slab-coupled optical waveguide concept. The device has a large mode (5.8 x 7.6 um) and ultra-low optical confinement ([] ~ 0.05%), allowing a 2-mm absorption length. The maximum photocurrent obtained was 250 mA (R = 0.8-A/W) at 1.55 um.
Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators
Summary
Summary
We present a systematic study of Mach-Zehnder silicon optical modulators based on carrier-injection. Detailed comparisons between modeling and measurement results are made with good agreement obtained for both DC and AC characteristics. A figure of merit, static VpiL, as low as 0.24Vmm is achieved. The effect of carrier lifetime variation...
Organometallic vapor phase epitaxy of relaxed InPAs/InP as multiplication layers for avalanche photodiodes
Summary
Summary
InP1-yAsy epitaxial layers grown lattice-mismatched (LMM) on InP substrates were investigated as a new materials system for multiplication layers in Geiger-mode avalanche photodiodes (GM APDs) for detection of photons in the range 1.6-2.5 mm. LMM InP1-yAsy epilayers were grown on semi-insulating (1 0 0) InP substrates misoriented 0.2 and 2...
Experimental demonstration of remote optical detection of trace explosives.
Summary
Summary
MIT Lincoln Laboratory has developed a concept that could enable remote (10s of meters) detection of trace explosives' residues via a field-portable laser system. The technique relies upon laser-induced photodissociation of nitro-bearing explosives into vibrationally excited nitric oxide (NO) fragments. Subsequent optical probing of the first vibrationally excited state at...
Integration of high-speed surface-channel charge coupled devices into an SOI CMOS process using strong phase shift lithography
Summary
Summary
To enable development of novel signal processing circuits, a high-speed surface-channel charge coupled device (CCD) process has been co-integrated with the Lincoln Laboratory 180-nm RF fully depleted silicon-on-insulator (FDSOI) CMOS technology. The CCDs support charge transfer clock speeds in excess of 1 GHz while maintaining high charge transfer efficiency (CTE)...