Publications
Tagged As
Analysis and comparison of separation measurement errors in single sensor and multiple radar mosiac display terminal environments
Summary
Summary
This paper presents an analyis to estimate and characterize the errors in the measured separation distance between aircraft that are displayed on a radar screen to a controller in a single sensor terminal environment compared to a multiple radar mosiac terminal environment. The error in measured or displayed separation is...
Machine intelligent gust front algorithm for the WSP
Summary
Summary
The Machine Intelligent Gust Front Algorithm (MIGFA) utilizes multi-dimensional image processing and fuzzy logic techniques to identify gust fronts in Doppler radar data generated by the ASR-9 Weather Systems Processor (WSP). The algorithm generates products that support both safety and planning functions for ATC. Outputs include current and predicted locations...
An improved gust front detection capability for the ASR-9 WSP
Summary
Summary
The Weather Systems Processor (WSP) is being deployed by FAA at 35 medium and high-density ASR-9 equipped airports across the United States. The Machine Intelligent Gust Front Algorithm (MIGFA) developed at Lincoln Laboratory provides important gust front detection and tracking capability for this system as well as other FAA systems...
The radar Correlation and Interpolation (C&I) algorithms deployed in the ASR-9 Processor Augmentation Card (9PAC)
Summary
Summary
The Airport Surveillance Radar 9 (ASR-9) is a terminal radar that was deployed by the Federal Aviation Administration (FAA) during the early 1990's at more than 130 of the busiest airports in the United States. The ASR-9 Processor Augmentation Card (9-PAC), developed at MIT Lincoln Laboratory, is a processor board...
ASR-9 weather systems processor software overview
Summary
Summary
The ASR-9 Weather Systems Processor (WSP) augments the weather detection capability of existing ASR-9 radars to include low-level wind shear warnings, storm cell tracking and prediction, and improved immunity to false weather echoes due to anomalous propagation (AP). To economically develop and field an operational system at the 34 WSP...
FAA surveillance radar data as a complement to the WSR-88D network
Summary
Summary
The U.S. Federal Aviation Administration (FAA) operates over 400 C- to L-band surveillance radars-Airport Surveillance Radars (ASRs), Air Route Surveillance Radars (ARSRs) and Terminal Doppler Weather Radars (TDWRs). Current generation terminal and en route aircraft surveillance radars (ASR-9, ASR-11 and ARSR-4) feature dedicated digital processing channels that measure and display...
Operational experience with weather products generated through joint use of FAA and NWS weather radar sensors
Summary
Summary
In this paper, we describe current joint use of Federal Aviation Administration (FAA) and National Weather Service (NWS) radar sensors to provide operational weather decision support for the FAA, airline operations centers, and NWS forecast offices. The capabilities that have been demonstrated include fully automatic data editing and short term...
The development of phased-array radar technology
Summary
Summary
Lincoln Laboratory has been involved in the development of phased-array radar technology since the late 1950s. Radar research activities have included theoretical analysis, application studies, hardware design, device fabrication, and system testing. Early phased-array research was centered on improving the national capability in phased-array radars. The Laboratory has developed several...
An evaluation of the ASR-9 weather channel based on observations from the ITWS prototypes
Summary
Summary
The Federal Aviation Administration's (FAA) Airport Surveillance Radar (ASR-9) is a high-scan-rate system which provides a "critical" function in terms of air traffic control (ATC). In addition to its primary role of air traffic surveillance, the system also generates precipitation data for display on air traffic specialists' radar scopes and...
Study of Network Expansion LLWAS (LLWAS-NE) fault identification and system warning optimization through joint use of LLWAS-NE and TDWR data
Summary
Summary
Low level wind shear has been identified as an aviation hazard which has caused or contributed to a significant number of aircraft accidents (Soffer, 1990). To protect aircraft from hazardous wind shear, the Federal Aviation Administration (FAA) developed a system called the Low Level Wind Shear Alert System (LLWAS), containing...