Publications

Refine Results

(Filters Applied) Clear All

A shear-based microburst detection algorithm for the Integrated Terminal Weather System (ITWS)

Published in:
26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 667-669.

Summary

This paper explains the initial design of the ITWS microburst detection algorithm and illustrates some early results. The final section concentrates on the plans for algorithm testing and the planned enhancements to its capabilities.
READ LESS

Summary

This paper explains the initial design of the ITWS microburst detection algorithm and illustrates some early results. The final section concentrates on the plans for algorithm testing and the planned enhancements to its capabilities.

READ MORE

A machine intelligent gust front algorithm for Doppler weather radars

Published in:
26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 654-656.

Summary

Gust fronts generated by thunderstorms can seriously affect the safety and efficiency of airport operations. Lincoln Laboratory, under contract with the Federal Aviation Administration (FAA), has had a significant role in the development of two Doppler radar systems that are capable of detecting low altitude wind shears, including gust fronts, in the airport terminal control area. These systems are the latest generation Airport Surveillance Radar, enhanced with a Wind Shear Processor (ASR-98 WSP) and the Terminal Doppler Weather Radar (TDWR).
READ LESS

Summary

Gust fronts generated by thunderstorms can seriously affect the safety and efficiency of airport operations. Lincoln Laboratory, under contract with the Federal Aviation Administration (FAA), has had a significant role in the development of two Doppler radar systems that are capable of detecting low altitude wind shears, including gust fronts...

READ MORE

Adjoint-method retrievals of microburst winds from TDWR data

Published in:
26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 433-434.

Summary

The simple adjoint (SA) method of Qiu and Xu (1992, henceforth referred to as QX92) was recently upgraded and tested with the Phoenix-II data for retrieving the low-altitude winds from single-Doppler scans (Xu et al. 1993a,b henceforth referred to as XQY93a,b). The major results can be briefly reviewed as follows: (i) Using multiple time-level data with the adjoint formulation makes the retrieval more accurate and less sensitive to the observational error. (ii) Imposing a weak nondivergence constraint can suppress the spurious divergence caused by the data noise and improve the retrieval. (iii) Retrieving the eddy coefficients improves the wind retrieval. (iv) Retrieving the time-man residual term improves the wind retrieval. Although the results in XQY93a,b were encouraging, the Phoenix-II data used in XQY93a,b were collected on non-storm days with chaff dispensed from an aircraft. The real challenge is to test the SA method with storm data. A microburst case is selected for the test in this paper.
READ LESS

Summary

The simple adjoint (SA) method of Qiu and Xu (1992, henceforth referred to as QX92) was recently upgraded and tested with the Phoenix-II data for retrieving the low-altitude winds from single-Doppler scans (Xu et al. 1993a,b henceforth referred to as XQY93a,b). The major results can be briefly reviewed as follows...

READ MORE

Anomalous propagation associated with thunderstorm outflows

Published in:
Proc. 26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 238-240.

Summary

Battan noted that ducting of radar energy by anomalous atmospheric refractive index profiles and resulting abnormally strong ground clutter can occur during three types of meteorological circumstance: (i) large scale boundary layer temperature inversions and associated sharp decrease in moisture with height -- these are often created by nocturnal radiative cooling; (ii) warm, dry air moving over cooler bodies of water, resulting in cooling and moistening of air in the lowest levels; (iii) cool, moist outflows from thunderclouds. In contrast to the first two types of anaomalous propagation (AP), radar ducting associated with thunderstorm outflows is quite dynamic and may mimic echoes from precipitating clouds in terms of spatial scale and temporal evolution. While non-coherent weather radars (e.g. WSR-57) are obviously susceptible to false storm indications from this phenomemenon, Doppler radars that select the level of ground clutter suppression based on "clear day maps" may also fail to suppress the AP-induced ground clutter echoes. Operational Doppler radar systems known to be susceptible to this phenomena are the National Weather Service's WSR-88D and the Federal Aviation Administration's Airport Surveillance Radar (ASR-9) six-level weather channel. In this paper, characteristics of thunderstorm outflow-generated AP are documented using data from a testbed ASR-9 operated at Orlando, Florida. The testbed radar's rapid temporal update (4.8 seconds per PPI scan) and accurate scan-to-scan registration of radar resolution cells enabled characterization of the spatial and temporal evolution of the AP-induced clutter echoes. We discuss implications of these phenomenological characteristics on operational systems, specifically the ASR-9. Algorithms for discrimination between true precipitation echoes and AP-induced ground clutter are discussed.
READ LESS

Summary

Battan noted that ducting of radar energy by anomalous atmospheric refractive index profiles and resulting abnormally strong ground clutter can occur during three types of meteorological circumstance: (i) large scale boundary layer temperature inversions and associated sharp decrease in moisture with height -- these are often created by nocturnal radiative...

READ MORE

Clutter filter design for multiple-PRT signals

Published in:
Proc. 26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 235-237.

Summary

The trade-off of range vs. velocity ambiguity is fundamental and operationally significant for many S- and C-band pulsed Doppler weather radars. Transmission schemes using multiple pulse repetition times (PRTs) (i.e., nonuniform pulse spacing) offer the potential for extending the unambiguous measurement range by resolving intervals of velocity ambiguity. Unfortunately, multiple PRT methods can be problematic with low-elevation scanning when ground clutter removal is required. We have constructed both Chebyshev and mean-squared error (MSE) desing algorithms (Choroboy, 1993) that deal with design in the complex domain; the MSE algorithms are described below.
READ LESS

Summary

The trade-off of range vs. velocity ambiguity is fundamental and operationally significant for many S- and C-band pulsed Doppler weather radars. Transmission schemes using multiple pulse repetition times (PRTs) (i.e., nonuniform pulse spacing) offer the potential for extending the unambiguous measurement range by resolving intervals of velocity ambiguity. Unfortunately, multiple...

READ MORE

Coherent processing across multi-PRI waveforms

Published in:
Proc. 26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 232-234.

Summary

Meteorological Doppler radars have typically utilized constant pulse-repetition intervals (PRI) to facilitate clutter filtering and estimation of weather echo spectral moments via pulse-pair or periodogram-based algorithms. Utilization of variable PRIs to support resolution of velocity ambiguities has been discussed, for example by Banjanin and Zrnic, but not implemented owing to difficulties associated with clutter filter design. Recent work by Chornoboy presents design algorithms for time-varying finite impulse response (FIR) filters that achieve Chebyshev or mean-squared error (MSE) optimality when processing multi-PRI waveforms. This paper is a follow-on to that work, treating techniques for post-clutter filter processing (e.g. periodogram estimation) that are appropriate for such waveforms. Our approach involves a least-squares fitting of the signal - sampled at a nonuniform rate - to a weighted sum of uniformly spaces sinusoids. The sinusoids or "basis functions" are chosen to span a Nyquist interval consistent with the longest PRI in the transmitted waveform, and need not be centered at zero Doppler. Determination of the sinusoid weightings - effectively a discrete Fourier transformation (DFT) - and the associated residual between the harmonic fit and the data area accomplished via multiplications of the signal vector with precomputed matrices. The resulting spectrum estimate can be used directly for weather echo moment calculations, or can be inverse-Fourier transformed using conventional techniques to generate a time-domain signal representation. This work has been motivated by a specific application - estimation of weather spectrum moments for a Wind Shear Processor (WSP) modification to the Federal Aviation Administration's Airport Surveillance Radar (ASR-9). Our approach supports candidate low-altitude radial wind estimation algorithms that operate on frequency-domain signal representations and require that the radar's block-stagger PRI and the possibility of velocity ambiguities be accounted for in generating the spectrum estimates. In principle, however, these processing techniques are also applicable to weather radar systems such as WSR-88D and Terminal Doppler Weather Radar (TDWR) where range and Doppler ambiguities are an operational concern.
READ LESS

Summary

Meteorological Doppler radars have typically utilized constant pulse-repetition intervals (PRI) to facilitate clutter filtering and estimation of weather echo spectral moments via pulse-pair or periodogram-based algorithms. Utilization of variable PRIs to support resolution of velocity ambiguities has been discussed, for example by Banjanin and Zrnic, but not implemented owing to...

READ MORE

Dual-Doppler measurements of microburst outflow strength asymmetry

Published in:
26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 664-666.

Summary

The Federal Aviation Administration (FAA) has been sponsoring Lincoln Laboratory in its effort to develop and test weather detection algorithms for the Terminal Doppler Weather Radar (TDWR). An automated microburst detection algorithm operates on the TDWR radial velocity data and, based on the shear and velocity difference along the radial, outputs regions which are hazards to aviation. This algorithm has been operating since 1987 in Denver, Kansas City, and Orlando and is part of the operational TDWR being deployed across the country. One issue which continues to cause concern for automated windshear detection is microburst asymmetry. Asymmetry, or aspect angle dependence, in microbursts refers to outflows which have a divergent surface outflow strength or extent that varies depending on the viewing angle of the radar. The TDWR is a single-Doppler radar, therefore, an asymmetric microburst may be underestimated or go undetected if the radar is viewing the event from an aspect angle where the strength of the outflow is weak. Past work by Wilson et al., Eilts, and Hallowell has indicated that some microbursts are highly asymmetric. Strength asymmetries (maximum/minimum strength over all viewing angles) from these past studies ranged from 1.3 to as high as 6.0. Hallowell using Denver data examined 27 Denver microbursts (96 observations) and found strength asymmetries from 1.3 to 3.8 with a median of 1.9. However, this previous work has been limited in scope to Denver and Oklahoma (plains) microbursts, and may have used assumptions about the data which introduce false or apparent asymmetry.
READ LESS

Summary

The Federal Aviation Administration (FAA) has been sponsoring Lincoln Laboratory in its effort to develop and test weather detection algorithms for the Terminal Doppler Weather Radar (TDWR). An automated microburst detection algorithm operates on the TDWR radial velocity data and, based on the shear and velocity difference along the radial...

READ MORE

Estimating a windshear hazard index from ground-based terminal Doppler radar

Published in:
26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 670-672.

Summary

In the past decade, a great deal of effort has been invested in developing ground based wind shear detection systems for major U.S. airports. However, there has been a lack of research in developing a quantitative relationship between the wind shear hazards detected by ground based systems and the actual hazard experienced by an aircraft flying through the affected air space. To date, the main thrust of the verification efforts for ground-based systems has been to ensure that the system accurately detect and report the presence of the meteorological phenomena that cause potentially important hazardous windshear. There is a subtle, but potentially important difference between detecting the presence or a microburst and detecting the presence of an aviation hazard. With this in mind, it would seem prudent to rigorously determine what correlation exists between the wind shear warnings that are generated from ground systems and the performance impact on aircraft flying through the impacted airspace. The operational demonstration of the testbed Terminal Doppler Weather Radar (TDWR) in Orlando, Florida along with the testing of airborne Doppler radar systems created a unique opportunity to compare extensively the ground based windshear reports with in-situ aircraft measurements. This paper presents the results from 69 microburst penetrations flown in 1990 and 1991 by the University of North Dakota (UND), the National Aeronautics and Space Administration (NASA) Langley Research Center, and Rockwell Collins under surveillance of the Lincoln-operated TDWR testbed radar. The primary goal of the research was to determine the relative accuracy of several methods designed to generate a numerical microburst hazard index, called the F factor, from ground-based Doppler radar data. It is hope that this work will provide both a qualitative and quantitative basis for the discussion and assessment of microburst hazard reporting for ground-based microburst detection systems. The Integrated Airborne Wind Shear Program is a joint NASA/FAA program with the objective to provide the technology base that will permit low altitude windshear risk reduction through airborne detection, warning, and avoidance. Additionally, the program aims to demonstrate the practicality and utility of real-time assimilation and synthesis of ground-derived windshear data to support executive level cockpit warning and crew-centered information display. Lincoln Laboratory joined this effort and provided the weather radar ground support and some of the post-flight data analysis for NASA's microburst penetration flights in Orlando, Florida.
READ LESS

Summary

In the past decade, a great deal of effort has been invested in developing ground based wind shear detection systems for major U.S. airports. However, there has been a lack of research in developing a quantitative relationship between the wind shear hazards detected by ground based systems and the actual...

READ MORE

Quantifying airport terminal area weather surveillance requirements

Published in:
26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 47-49.

Summary

The Federal Aviation Administration (FAA) Terminal Area Surveillance System (TASS) research, engineering, and development program was initiated in part to address future weather sensing needs in the terminal area. By the early 21st century, planned systems such as the Terminal Doppler Weather Radar (TDWR) and Airport Surveillance Radar-9 (ASR-9) will be well into their designed life cycles. Any new terminal weather surveillance system should be designed to address existing deficiencies. Key unmet weather sensing needs include detections of: true 3-dimensional winds (vs. radial component), winds in the absence of precipitation, wake vortices, total lightning, hail, icing conditions, clear air turbulence, hazardous weather cells (with adequate time and space resolution), cloud cover and cloud bases (including layers), fog, and visibility (Runway Visual Range), as well as predictions of: the atmospheric conditions mentioned above, wind shifts, microbursts, tornadoes, and snow/rainfall rates (Evans 1991a, McCarthy 1991). In this paper, we investigate the premise that hazardous weather cells are not currently being measured with adequate time and space resolution in the terminal area. Since a new surveillance system should be based on knowledge of storm dynamics, we have performed a preliminary study of update rate (using rapid scan radar to detect rapidly developing thunderstorms and precursors to the low altitude hazards such as microbursts that they produce. Other aspects of a future radar system such as multi-parameter techniques required to discriminate between ice and water phase precipitation, etc. are not considered.
READ LESS

Summary

The Federal Aviation Administration (FAA) Terminal Area Surveillance System (TASS) research, engineering, and development program was initiated in part to address future weather sensing needs in the terminal area. By the early 21st century, planned systems such as the Terminal Doppler Weather Radar (TDWR) and Airport Surveillance Radar-9 (ASR-9) will...

READ MORE

Preliminary results of the weather testing component of the Terminal Doppler Weather Radar operational test and evaluation

Published in:
Proc. 26th Int. Conf. on Radar Meteorology, 24-28 May 1993, pp. 29-34.

Summary

The Terminal Doppler Weather Radar (TDWR) system which has been developed by Raytheon Co. for the Federal Aviation Administration (FAA), provides automatic detection of microbursts and low-altitude wind shear. Microburst- and gust front-induced wind shear can result in a sudden, large change in airspeed which can have disastrous effect on aircraft performance. during take off or landing. The second major function of TDWR is to improve air traffic management through forecasts of wind shifts, precipitation and other weather hazards. The TDWR system generates Doppler velocity, reflectivity, and spectrum width data. The base data are automatically dealiased and clutter is removed through filtering and mapping. Precipitation and windshear products, such as microbursts and gust fronts, are displayed as graphic products on the Geographic Situation Display which is intended for use by Air Traffic Control supervisors. Alphanumeric messages indicating the various windshear alerts and derived airspeed losses and gains are sent to a flat panel ribbon display which is used by the controllers in the control tower. The TDWR proof-of-concept and operational feasibility have been demonstrated in a number of FAA-sponsored tests and evaluations conducted by Massachusetts Institute of Technology's Lincoln Laboratory (MIT/LL) in Memphis, TN (1985); Huntsville, AL (1986); Denver, CO (1987, 1988); Kansas City, MO (1989, and Orlando, FL (1990-1992). In order to verify that the TDWR meets FAA operational suitability and effectiveness requirements, an Operational Test & Evaluations (OT&E) was conducted at the Oklahoma City site during the period from 24 August to 30 October 1992. The testing addressed National Airspace System (NAS)-SS-1000 requirements, weather detection performance, safety, operational system performance, maintenance, instruction books, Remote Maintenance Monitoring System (RMMS), system adaptable parameters, bullgear wear, and limited Air Traffic (AT) suitability. The TDWR OT&E Integration and Operational testing was conducted using a variety of methods dependent on the area being tested. This paper discusses primarily the weather detection performance testing. A rough analysis was performed on the algorithm output and the base data to determine the performance of the TDWR in detecting wind shear phenomena. Final results will be available after additional testing, which is scheduled for Spring of 1993, and post analysis in conducted.
READ LESS

Summary

The Terminal Doppler Weather Radar (TDWR) system which has been developed by Raytheon Co. for the Federal Aviation Administration (FAA), provides automatic detection of microbursts and low-altitude wind shear. Microburst- and gust front-induced wind shear can result in a sudden, large change in airspeed which can have disastrous effect on...

READ MORE