Publications

Refine Results

(Filters Applied) Clear All

Parallel and Distributed Processing

Author:
Published in:
High Performance Embedded Computing Handbook, Chapter 18

Summary

This chapter discusses parallel and distributed programming technologies for high performance embedded systems. Computational or memory constraints can be overcome with parallel processing. The primary goal of parallel processing is to improve performance by distributing computation across multiple processors or increasing dataset sizes by distributing data across multiple processors’ memory. The typical programmer has little to no experience writing programs that run on multiple processors. The transition from serial to parallel programming requires significant changes in the programmer’s way of thinking. For example, the programmer must worry about how to distribute data and computation across multiple processors to maximize performance and how to synchronize and communicate between processors. Although most programmers will likely admit to having no experience with parallel programming, many have indeed had exposure to a rudimentary type in the form of threads. A typical threaded program starts execution as a single thread.
READ LESS

Summary

This chapter discusses parallel and distributed programming technologies for high performance embedded systems. Computational or memory constraints can be overcome with parallel processing. The primary goal of parallel processing is to improve performance by distributing computation across multiple processors or increasing dataset sizes by distributing data across multiple processors’ memory...

READ MORE

All silicon infrared photodiodes: photo response and effects of processing temperature

Summary

CMOS compatible infrared waveguide Si photodiodes are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. This article compares diodes fabricated using two annealing temperatures, 300 and 475C. 0.25-mm-long diodes annealed to 300C have a response to 1539 nm radiation of 0.1 A W-1 at a reverse bias of 5 V and 1.2 A W-1 at 20 V. 3-mm-long diodes processed to 475C exhibited two states, L1 and L2, with photo responses of 0.3 +/-0.1 A W-1 at 5 V and 0.7 +/-10.2 A W-1 at 20 V for the L1 state and 0.5 +/-0.2 A W-1 at 5 V and 4 to 20 A W-1 at 20 V for the L2 state. The diodes can be switched between L1 and L2. The bandwidths vary from 10 to 20 GHz. These diodes will generate electrical power from the incident radiation with efficiencies from 4 to 10 %.
READ LESS

Summary

CMOS compatible infrared waveguide Si photodiodes are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. This article compares diodes fabricated using two annealing temperatures, 300 and 475C. 0.25-mm-long diodes annealed to 300C have a response to 1539 nm radiation of 0.1 A W-1 at a reverse...

READ MORE

Topic identification from audio recordings using word and phone recognition lattices

Published in:
2000 IEEE Workshop on Automatic Speech Recognition and Understanding, 9-13 December 2007, pp. 659-664.

Summary

In this paper, we investigate the problem of topic identification from audio documents using features extracted from speech recognition lattices. We are particularly interested in the difficult case where the training material is minimally annotated with only topic labels. Under this scenario, the lexical knowledge that is useful for topic identification may not be available, and automatic methods for extracting linguistic knowledge useful for distinguishing between topics must be relied upon. Towards this goal we investigate the problem of topic identification on conversational telephone speech from the Fisher corpus under a variety of increasingly difficult constraints. We contrast the performance of systems that have knowledge of the lexical units present in the audio data, against systems that rely entirely on phonetic processing.
READ LESS

Summary

In this paper, we investigate the problem of topic identification from audio documents using features extracted from speech recognition lattices. We are particularly interested in the difficult case where the training material is minimally annotated with only topic labels. Under this scenario, the lexical knowledge that is useful for topic...

READ MORE

Irreversible electrowetting on thin fluoropolymer films

Published in:
Langmuir, Vol. 23, No. 24, 20 November 2007, pp. 12429-12435.

Summary

A study was conducted to investigate electrowetting reversibility associated with repeated voltage actuations for an aqueous droplet situated on a silicon dioxide insulator coated with an amorphous fluoropolymer film ranging in thickness from 20 to 80 nm. The experimental results indicate that irreversible trapped charge may occur at the aqueous-solid interface, giving rise to contact angle relaxation. The accumulation of trapped charge was found to be related to the applied electric field intensity and the breakdown strength of the fluoropolymer. On the basis of the data, an empirical model was developed to estimate the amount of trapped charge in the fluoropolymer as well as the voltage threshold for the onset of irreversible electrowetting.
READ LESS

Summary

A study was conducted to investigate electrowetting reversibility associated with repeated voltage actuations for an aqueous droplet situated on a silicon dioxide insulator coated with an amorphous fluoropolymer film ranging in thickness from 20 to 80 nm. The experimental results indicate that irreversible trapped charge may occur at the aqueous-solid...

READ MORE

A low-loss double-tuned transformer

Published in:
IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 11, November 2007, pp. 772-774.

Summary

In this letter, we present a state-of-the-art, planar double-tuned transformer using high- , micromachined spiral inductors and integrated capacitors. This circuit provides a 4:1 impedance transformation over a 30% bandwidth centered at 4.06 GHz, with a minimum insertion loss of 1.50 dB. The fabricated circuit occupies a total area of 440 500 m2 and finds application in power amplifier and other matching applications. An accurate lumped-element circuit model and design tradeoffs are presented. We believe this is the first implementation of a planar microwave double-tuned transformer.
READ LESS

Summary

In this letter, we present a state-of-the-art, planar double-tuned transformer using high- , micromachined spiral inductors and integrated capacitors. This circuit provides a 4:1 impedance transformation over a 30% bandwidth centered at 4.06 GHz, with a minimum insertion loss of 1.50 dB. The fabricated circuit occupies a total area of...

READ MORE

Advanced trigger development

Published in:
Lincoln Laboratory Journal, Vol. 17, No. 1, November 2007, pp. 29-62.

Summary

The deadliest form of a biological attack is aerosolized agents dispersed into the atmosphere. Early detection of aerosolized biological agents is important for defense against these agents. Because of the wide range of possible attack scenarios and attack responses, there is also a wide range of detector requirements. This article focuses on real-time, single-particle, optically based bio-agent trigger detectors--the first responder to an aerosol attack--and how to engineer these detectors to achieve optimal detection performance.
READ LESS

Summary

The deadliest form of a biological attack is aerosolized agents dispersed into the atmosphere. Early detection of aerosolized biological agents is important for defense against these agents. Because of the wide range of possible attack scenarios and attack responses, there is also a wide range of detector requirements. This article...

READ MORE

The next-generation multimission U.S. surveillance radar network

Published in:
Bull. American Meteorological Society, Vol. 88, No. 11, November 2007, pp. 1739-1751.

Summary

Current U.S. weather and aircraft surveillance radar networks vary in age from 10 to more than 40 years. Ongoing sustainment and upgrade programs can keep these operating in the near to mid-term, but the responsible agencies National Weather Service (NWS), Federal Aviation Administration (FAA), and the Departments of Defense (DoD) and Homeland Security (DHS) recognize that large-scale replacement activities must begin during the next decade. The National Weather Radar Testbed (NWRT) in Norman, Oklahoma, is a multiagency project demonstrating operational weather measurements capability enhancements that could be realized using electronically steered phased-array radars as a replacement for the current Weather Surveillance Radar-1988 Doppler (WSR-88D). FAA support for the NWRT and related efforts address air traffic control (ATC) and homeland defense surveillance missions that could be simultaneously accomplished using the agile-beam capability of a phased array weather radar network. In this paper, we discuss technology issues, operational considerations, and cost trades associated with the concept of replacing current national surveillance radars with a single network of multimission phased array radars (MPAR). We begin by describing the current U.S. national weather and aircraft surveillance radar networks and their technical parameters. The airspace coverage and surveillance capabilities of these existing radars provide a starting point for defining requirements for the next-generation airspace surveillance system. We next describe a conceptual MPAR high-level system design and our initial development and testing of critical subsystems. This work, in turn, has provided a solid basis for estimating MPAR costs for comparison with existing, mechanically scanned operational surveillance radars. To assess the numbers of MPARs that would need to be procured, we present a conceptual MPAR network configuration that duplicates airspace coverage provided by current operational radars. Finally, we discuss how the improved surveillance capabilities of MPAR could be utilized to more effectively meet the weather and aircraft surveillance needs of U.S. civil and military agencies.
READ LESS

Summary

Current U.S. weather and aircraft surveillance radar networks vary in age from 10 to more than 40 years. Ongoing sustainment and upgrade programs can keep these operating in the near to mid-term, but the responsible agencies National Weather Service (NWS), Federal Aviation Administration (FAA), and the Departments of Defense (DoD)...

READ MORE

An interactive attack graph cascade and reachability display

Published in:
VizSEC 2007, Proc. of the Workshop on Visualization for Computer Security, 29 October 2007, pp. 221-236.

Summary

Attack graphs for large enterprise networks improve security by revealing critical paths used by adversaries to capture network assets. Even with simplification, current attack graph displays are complex and difficult to relate to the underlying physical networks. We have developed a new interactive tool intended to provide a simplified and more intuitive understanding of key weaknesses discovered by attack graph analysis. Separate treemaps are used to display host groups in each subnet and hosts within each treemap are grouped based on reachability, attacker privilege level, and prerequisites. Users position subnets themselves to reflect their own intuitive grasp of network topology. Users can also single-step the attack graph to successively add edges that cascade to show how attackers progress through a network and learn what vulnerabilities or trust relationships allow critical steps. Finally, an integrated reachability display demonstrates how filtering devices affect host-to-host network reachability and influence attacker actions. This display scales to networks with thousands of hosts and many subnets. Rapid interactivity has been achieved because of an efficient C++ computation engine (a program named NetSPA) that performs attack graph and reachability computations, while a Java application manages the display and user interface.
READ LESS

Summary

Attack graphs for large enterprise networks improve security by revealing critical paths used by adversaries to capture network assets. Even with simplification, current attack graph displays are complex and difficult to relate to the underlying physical networks. We have developed a new interactive tool intended to provide a simplified and...

READ MORE

Tuning intrusion detection to work with a two encryption key version of IPsec

Published in:
IEEE MILCOM 2007, 29-31 October 2007, pp. 3977-3983.

Summary

Network-based intrusion detection systems (NIDSs) are one component of a comprehensive network security solution. The use of IPsec, which encrypts network traffic, renders network intrusion detection virtually useless unless traffic is decrypted at network gateways. Host-based intrusion detection systems (HIDSs) can provide some of the functionality of NIDSs but with limitations. HIDSs cannot perform a network-wide analysis and can be subverted if a host is compromised. We propose an approach to intrusion detection that combines HIDS, NIDS, and a version of IPsec that encrypts the header and the body of IP packets separately ("Two-Zone IPsec"). We show that all of the network events currently detectable by the Snort NIDS on unencrypted network traffic are also detectable on encrypted network traffic using this approach. The NIDS detects network-level events that HIDSs have trouble detecting and HIDSs detect application-level events that can't be detected by the NIDS.
READ LESS

Summary

Network-based intrusion detection systems (NIDSs) are one component of a comprehensive network security solution. The use of IPsec, which encrypts network traffic, renders network intrusion detection virtually useless unless traffic is decrypted at network gateways. Host-based intrusion detection systems (HIDSs) can provide some of the functionality of NIDSs but with...

READ MORE

Sinewave analysis/synthesis based on the fan-chirp transform

Published in:
Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, WASPA, 21-24 October 2007, pp. 247-250.

Summary

There have been numerous recent strides at making sinewave analysis consistent with time-varying sinewave models. This is particularly important in high-frequency speech regions where harmonic frequency modulation (FM) can be significant. One notable approach is through the Fan Chirp transform that provides a set of FM-sinewave basis functions consistent with harmonic FM. In this paper, we develop a complete sinewave analysis/synthesis system using the Fan Chirp transform. With this system we are able to obtain more accurate sinewave frequencies and phases, thus creating more accurate frequency tracks, in contrast to a system derived from the short-time Fourier transform, particularly for high-frequency regions of large-bandwidth analysis. With synthesis, we show an improvement in segmental signal-to-noise ratio with respect to waveform matching with the largest gains during rapid pitch dynamics.
READ LESS

Summary

There have been numerous recent strides at making sinewave analysis consistent with time-varying sinewave models. This is particularly important in high-frequency speech regions where harmonic frequency modulation (FM) can be significant. One notable approach is through the Fan Chirp transform that provides a set of FM-sinewave basis functions consistent with...

READ MORE