Publications
Towards robust paralinguistic assessment for real-world mobile health (mHealth) monitoring: an initial study of reverberation effects on speech
Summary
Summary
Speech is promising as an objective, convenient tool to monitor health remotely over time using mobile devices. Numerous paralinguistic features have been demonstrated to contain salient information related to an individual's health. However, mobile device specification and acoustic environments vary widely, risking the reliability of the extracted features. In an...
ReCANVo: A database of real-world communicative and affective nonverbal vocalizations
Summary
Summary
Nonverbal vocalizations, such as sighs, grunts, and yells, are informative expressions within typical verbal speech. Likewise, individuals who produce 0-10 spoken words or word approximations ("minimally speaking" individuals) convey rich affective and communicative information through nonverbal vocalizations even without verbal speech. Yet, despite their rich content, little to no data...
Individualized ultrasound-guided intervention phantom development, fabrication, and proof of concept
Summary
Summary
Commercial ultrasound vascular phantoms lack the anatomic diversity required for robust pre-clinical interventional device testing. We fabricated individualized phantoms to test an artificial intelligence enabled ultrasound-guided surgical robotic system (AI-GUIDE) which allows novices to cannulate deep vessels. After segmenting vessels on computed tomography scans, vessel cores, bony anatomy, and a...
Radio frequency interference censoring scheme for Canadian Weather Radar
Summary
Summary
An automated scheme is developed for the upgraded S-band polarimetric Canadian weather radars to detect and censor radio frequency interference from wireless communication devices. The suite of algorithms employed in this scheme effectively identifies and edits out interference-contaminated reflectivity data, while preserving data dominated by weather signals. This scheme was...
A deep learning-based velocity dealiasing algorithm derived from the WSR-88D open radar product generator
Summary
Summary
Radial velocity estimates provided by Doppler weather radar are critical measurements used by operational forecasters for the detection and monitoring of life-impacting storms. The sampling methods used to produce these measurements are inherently susceptible to aliasing, which produces ambiguous velocity values in regions with high winds and needs to be...
Visibility estimation through image analytics
Summary
Summary
MIT Lincoln Laboratory (MIT LL) has developed an algorithm, known as the Visibility Estimation through Image Analytics Algorithm (VEIA), that ingests camera imagery collected by the FAA Weather Cameras Program Office (WeatherCams) and estimates the meteorological visibility in statute miles. The algorithm uses the presence of edges in the imagery...
Extended polarimetric observations of chaff using the WSR-88D weather radar network
Summary
Summary
Military chaff is a metallic, fibrous radar countermeasure that is released by aircraft and rockets for diversion and masking of targets. It is often released across the United States for training purposes, and, due to its resonant cut lengths, is often observed on the S-band Weather Surveillance Radar–1988 Doppler (WSR-88D)...
Poisoning network flow classifiers [e-print]
Summary
Summary
As machine learning (ML) classifiers increasingly oversee the automated monitoring of network traffic, studying their resilience against adversarial attacks becomes critical. This paper focuses on poisoning attacks, specifically backdoor attacks, against network traffic flow classifiers. We investigate the challenging scenario of clean-label poisoning where the adversary's capabilities are constrained to...
Improving long-text authorship verification via model selection and data tuning
Summary
Summary
Authorship verification is used to link texts written by the same author without needing a model per author, making it useful for deanonymizing users spreading text with malicious intent. Recent advances in Transformer-based language models hold great promise for author verification, though short context lengths and non-diverse training regimes present...
Holding the high ground: Defending satellites from cyber attack
Summary
Summary
MIT Lincoln Laboratory and the Space Cyber-Resiliency group at Air Force Research Laboratory-Space Vehicles Directorate have prototyped a practical, operationally capable and secure-by-design spaceflight software platform called Cyber-Hardened Satellite Software (CHSS) for building space mission applications with security, recoverability and performance as first-class system design priorities. Following a successful evaluation...