Publications

Refine Results

(Filters Applied) Clear All

Towards robust paralinguistic assessment for real-world mobile health (mHealth) monitoring: an initial study of reverberation effects on speech

Published in:
Proc. Annual Conf. Intl. Speech Communication Assoc., INTERSPEECH 2023, 20-24 August 2023, pp. 2373-77.

Summary

Speech is promising as an objective, convenient tool to monitor health remotely over time using mobile devices. Numerous paralinguistic features have been demonstrated to contain salient information related to an individual's health. However, mobile device specification and acoustic environments vary widely, risking the reliability of the extracted features. In an initial step towards quantifying these effects, we report the variability of 13 exemplar paralinguistic features commonly reported in the speech-health literature and extracted from the speech of 42 healthy volunteers recorded consecutively in rooms with low and high reverberation with one budget and two higher-end smartphones, and a condenser microphone. Our results show reverberation has a clear effect on several features, in particular voice quality markers. They point to new research directions investigating how best to record and process in-the-wild speech for reliable longitudinal health state assessment.
READ LESS

Summary

Speech is promising as an objective, convenient tool to monitor health remotely over time using mobile devices. Numerous paralinguistic features have been demonstrated to contain salient information related to an individual's health. However, mobile device specification and acoustic environments vary widely, risking the reliability of the extracted features. In an...

READ MORE

ReCANVo: A database of real-world communicative and affective nonverbal vocalizations

Published in:
Sci. Data, Vol. 10, No. 1, 5 August 2023, 523.

Summary

Nonverbal vocalizations, such as sighs, grunts, and yells, are informative expressions within typical verbal speech. Likewise, individuals who produce 0-10 spoken words or word approximations ("minimally speaking" individuals) convey rich affective and communicative information through nonverbal vocalizations even without verbal speech. Yet, despite their rich content, little to no data exists on the vocal expressions of this population. Here, we present ReCANVo: Real-World Communicative and Affective Nonverbal Vocalizations - a novel dataset of non-speech vocalizations labeled by function from minimally speaking individuals. The ReCANVo database contains over 7000 vocalizations spanning communicative and affective functions from eight minimally speaking individuals, along with communication profiles for each participant. Vocalizations were recorded in real-world settings and labeled in real-time by a close family member who knew the communicator well and had access to contextual information while labeling. ReCANVo is a novel database of nonverbal vocalizations from minimally speaking individuals, the largest available dataset of nonverbal vocalizations, and one of the only affective speech datasets collected amidst daily life across contexts.
READ LESS

Summary

Nonverbal vocalizations, such as sighs, grunts, and yells, are informative expressions within typical verbal speech. Likewise, individuals who produce 0-10 spoken words or word approximations ("minimally speaking" individuals) convey rich affective and communicative information through nonverbal vocalizations even without verbal speech. Yet, despite their rich content, little to no data...

READ MORE

Individualized ultrasound-guided intervention phantom development, fabrication, and proof of concept

Published in:
45th Annual Intl. Conf. of the IEEE Engineering in Medicine and Biology Society, EMBC, 24-27 July 2023.

Summary

Commercial ultrasound vascular phantoms lack the anatomic diversity required for robust pre-clinical interventional device testing. We fabricated individualized phantoms to test an artificial intelligence enabled ultrasound-guided surgical robotic system (AI-GUIDE) which allows novices to cannulate deep vessels. After segmenting vessels on computed tomography scans, vessel cores, bony anatomy, and a mold tailored to the skin contour were 3D-printed. Vessel cores were coated in silicone, surrounded in tissue-mimicking gel tailored for ultrasound and needle insertion, and dissolved with water. One upper arm and four inguinal phantoms were constructed. Operators used AI-GUIDE to deploy needles into phantom vessels. Two groin phantoms were tested due to imaging artifacts in the other two phantoms. Six operators (medical experience: none, 3; 1-5 years, 2; 5+ years, 1) inserted 27 inguinal needles with 81% (22/27) success in a median of 48 seconds. Seven operators performed 24 arm injections, without tuning the AI for arm anatomy, with 71% (17/24) success. After excluding failures due to motor malfunction and a defective needle, success rate was 100% (22/22) in the groin and 85% (17/20) in the arm. Individualized 3D-printed phantoms permit testing of surgical robotics across a large number of operators and different anatomic sites. AI-GUIDE operators rapidly and reliably inserted a needle into target vessels in the upper arm and groin, even without prior medical training. Virtual device trials in individualized 3-D printed phantoms may improve rigor of results and expedite translation.
READ LESS

Summary

Commercial ultrasound vascular phantoms lack the anatomic diversity required for robust pre-clinical interventional device testing. We fabricated individualized phantoms to test an artificial intelligence enabled ultrasound-guided surgical robotic system (AI-GUIDE) which allows novices to cannulate deep vessels. After segmenting vessels on computed tomography scans, vessel cores, bony anatomy, and a...

READ MORE

Radio frequency interference censoring scheme for Canadian Weather Radar

Author:
Published in:
MIT Lincoln Laboratory Report ATC-454

Summary

An automated scheme is developed for the upgraded S-band polarimetric Canadian weather radars to detect and censor radio frequency interference from wireless communication devices. The suite of algorithms employed in this scheme effectively identifies and edits out interference-contaminated reflectivity data, while preserving data dominated by weather signals. This scheme was implemented in the NextGen Weather Processor test reference system for continuous real-time testing, and is expected to be incorporated into the new Canadian Aviation Weather Systems.
READ LESS

Summary

An automated scheme is developed for the upgraded S-band polarimetric Canadian weather radars to detect and censor radio frequency interference from wireless communication devices. The suite of algorithms employed in this scheme effectively identifies and edits out interference-contaminated reflectivity data, while preserving data dominated by weather signals. This scheme was...

READ MORE

A deep learning-based velocity dealiasing algorithm derived from the WSR-88D open radar product generator

Summary

Radial velocity estimates provided by Doppler weather radar are critical measurements used by operational forecasters for the detection and monitoring of life-impacting storms. The sampling methods used to produce these measurements are inherently susceptible to aliasing, which produces ambiguous velocity values in regions with high winds and needs to be corrected using a velocity dealiasing algorithm (VDA). In the United States, the Weather Surveillance Radar-1988 Doppler (WSR-88D) Open Radar Product Generator (ORPG) is a processing environment that provides a world-class VDA; however, this algorithm is complex and can be difficult to port to other radar systems outside the WSR-88D network. In this work, a deep neural network (DNN) is used to emulate the two-dimensional WSR-88D ORPG dealiasing algorithm. It is shown that a DNN, specifically a customized U-Net, is highly effective for building VDAs that are accurate, fast, and portable to multiple radar types. To train the DNN model, a large dataset is generated containing aligned samples of folded and dealiased velocity pairs. This dataset contains samples collected from WSR-88D Level-II and Level-III archives and uses the ORPG dealiasing algorithm output as a source of truth. Using this dataset, a U-Net is trained to produce the number of folds at each point of a velocity image. Several performance metrics are presented using WSR-88D data. The algorithm is also applied to other non-WSR-88D radar systems to demonstrate portability to other hardware/software interfaces. A discussion of the broad applicability of this method is presented, including how other Level-III algorithms may benefit from this approach.
READ LESS

Summary

Radial velocity estimates provided by Doppler weather radar are critical measurements used by operational forecasters for the detection and monitoring of life-impacting storms. The sampling methods used to produce these measurements are inherently susceptible to aliasing, which produces ambiguous velocity values in regions with high winds and needs to be...

READ MORE

Visibility estimation through image analytics

Published in:
MIT Lincoln Laboratory Report ATC-453

Summary

MIT Lincoln Laboratory (MIT LL) has developed an algorithm, known as the Visibility Estimation through Image Analytics Algorithm (VEIA), that ingests camera imagery collected by the FAA Weather Cameras Program Office (WeatherCams) and estimates the meteorological visibility in statute miles. The algorithm uses the presence of edges in the imagery and the strength of those edges to provide an estimation of the meteorological visibility within the scene. The algorithm also combines the estimates from multiple camera images into one estimate for a site or location using information about the agreement between camera estimates and the position of the Sun relative to each camera's view. The final output for a site is a prevailing visibility estimate in statute miles that can be easily compared to existing automated surface observation systems (ASOS) and/or human-observed visibility. This report includes thorough discussion of the VEIA background, development methodology, and transition process to the WeatherCams office operational platform (Sections 2–4). A detailed software description with flow diagrams is also provided in Section 5. Section 6 provides a brief overview of future research and development related to the VEIA algorithm.
READ LESS

Summary

MIT Lincoln Laboratory (MIT LL) has developed an algorithm, known as the Visibility Estimation through Image Analytics Algorithm (VEIA), that ingests camera imagery collected by the FAA Weather Cameras Program Office (WeatherCams) and estimates the meteorological visibility in statute miles. The algorithm uses the presence of edges in the imagery...

READ MORE

Extended polarimetric observations of chaff using the WSR-88D weather radar network

Published in:
IEEE Transactions on Radar Systems, vol. 1, pp. 181-192, 2023.

Summary

Military chaff is a metallic, fibrous radar countermeasure that is released by aircraft and rockets for diversion and masking of targets. It is often released across the United States for training purposes, and, due to its resonant cut lengths, is often observed on the S-band Weather Surveillance Radar–1988 Doppler (WSR-88D) network. Efforts to identify and characterize chaff and other non-meteorological targets algorithmically require a statistical understanding of the targets. Previous studies of chaff characteristics have provided important information that has proven to be useful for algorithmic development. However, recent changes to the WSR-88D processing suite have allowed for a vastly extended range of differential reflectivity, a prime topic of previous studies on chaff using weather radar. Motivated by these changes, a new dataset of 2.8 million range gates of chaff from 267 cases across the United States is analyzed. With a better spatiotemporal representation of cases compared to previous studies, new analyses of height dependence, as well as changes in statistics by volume coverage pattern are examined, along with an investigation of the new "full" range of differential reflectivity. A discussion of how these findings are being used in WSR-88D algorithm development is presented, specifically with a focus on machine learning and separation of different target types.
READ LESS

Summary

Military chaff is a metallic, fibrous radar countermeasure that is released by aircraft and rockets for diversion and masking of targets. It is often released across the United States for training purposes, and, due to its resonant cut lengths, is often observed on the S-band Weather Surveillance Radar–1988 Doppler (WSR-88D)...

READ MORE

Poisoning network flow classifiers [e-print]

Summary

As machine learning (ML) classifiers increasingly oversee the automated monitoring of network traffic, studying their resilience against adversarial attacks becomes critical. This paper focuses on poisoning attacks, specifically backdoor attacks, against network traffic flow classifiers. We investigate the challenging scenario of clean-label poisoning where the adversary's capabilities are constrained to tampering only with the training data - without the ability to arbitrarily modify the training labels or any other component of the training process. We describe a trigger crafting strategy that leverages model interpretability techniques to generate trigger patterns that are effective even at very low poisoning rates. Finally, we design novel strategies to generate stealthy triggers, including an approach based on generative Bayesian network models, with the goal of minimizing the conspicuousness of the trigger, and thus making detection of an ongoing poisoning campaign more challenging. Our findings provide significant insights into the feasibility of poisoning attacks on network traffic classifiers used in multiple scenarios, including detecting malicious communication and application classification.
READ LESS

Summary

As machine learning (ML) classifiers increasingly oversee the automated monitoring of network traffic, studying their resilience against adversarial attacks becomes critical. This paper focuses on poisoning attacks, specifically backdoor attacks, against network traffic flow classifiers. We investigate the challenging scenario of clean-label poisoning where the adversary's capabilities are constrained to...

READ MORE

Improving long-text authorship verification via model selection and data tuning

Published in:
Proc. 7th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, LaTeCH-CLfL2023, 5 May 2023, pp. 28-37.

Summary

Authorship verification is used to link texts written by the same author without needing a model per author, making it useful for deanonymizing users spreading text with malicious intent. Recent advances in Transformer-based language models hold great promise for author verification, though short context lengths and non-diverse training regimes present challenges for their practical application. In this work, we investigate the effect of these challenges in the application of a Cross-Encoder Transformer-based author verification system under multiple conditions. We perform experiments with four Transformer backbones using differently tuned variants of fanfiction data and found that our BigBird pipeline outperformed Longformer, RoBERTa, and ELECTRA and performed competitively against the official top ranked system from the PAN evaluation. We also examined the effect of authors and fandoms not seen in training on model performance. Through this, we found fandom has the greatest influence on true trials, pairs of text written by the same author, and that a balanced training dataset in terms of class and fandom performed the most consistently.
READ LESS

Summary

Authorship verification is used to link texts written by the same author without needing a model per author, making it useful for deanonymizing users spreading text with malicious intent. Recent advances in Transformer-based language models hold great promise for author verification, though short context lengths and non-diverse training regimes present...

READ MORE

Holding the high ground: Defending satellites from cyber attack

Published in:
The Cyber Edge by Signal, 31 March 2023.

Summary

MIT Lincoln Laboratory and the Space Cyber-Resiliency group at Air Force Research Laboratory-Space Vehicles Directorate have prototyped a practical, operationally capable and secure-by-design spaceflight software platform called Cyber-Hardened Satellite Software (CHSS) for building space mission applications with security, recoverability and performance as first-class system design priorities. Following a successful evaluation of CHSS against an existing U.S. Space Force (USSF) mission, the CHSS platform is currently being extended to support hybrid space vehicle architectures that incorporate both CHSS-aware and legacy subsystems. CHSS has the potential to revolutionize the cyber-resiliency of space systems and substantially ease the burden of defensive cyber operations (DCO).
READ LESS

Summary

MIT Lincoln Laboratory and the Space Cyber-Resiliency group at Air Force Research Laboratory-Space Vehicles Directorate have prototyped a practical, operationally capable and secure-by-design spaceflight software platform called Cyber-Hardened Satellite Software (CHSS) for building space mission applications with security, recoverability and performance as first-class system design priorities. Following a successful evaluation...

READ MORE